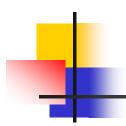


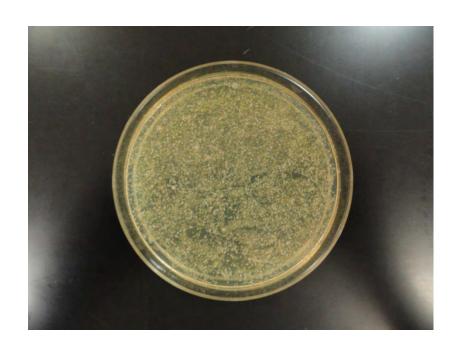
David Matsuhiro

Cleanroom Compliance Inc.

dmatsuhiro@cleanroomcompliance.com

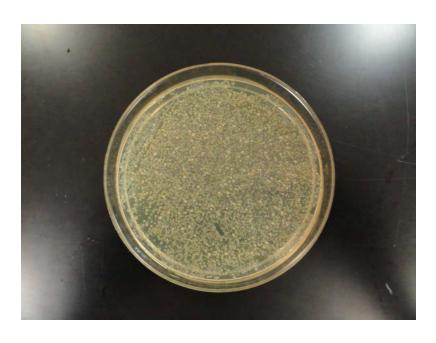


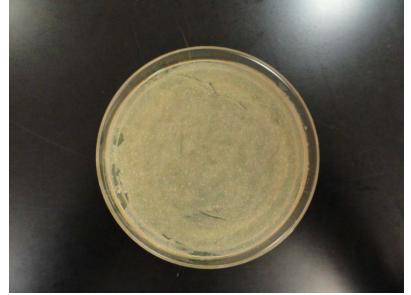
Background Information


- Name
- Department
- Years in the Industry
- Micro Experience/Classes
- Aseptic Gown Qualified
- Media Fill Qualified
- Specific Areas of Interest
- Expectation

- How clean or dirty are common items you use/eat every day? Which has the most bacteria?
 - Sandwich
 - Floor
 - Fingers
 - Phone
 - Money
 - Door Handle to refrigerator

Chicken Sandwich




Lettuce

Sprouts

Chicken Sandwich

Tomato

Chicken

Aseptic

The absence of microorganisms capable of causing infection or contamination.

Aseptic processing

The method of manufacturing to produce sterile products that are not subjected to terminal sterilization

Sterile

The absence of living organisms

Sterility Assurance Level (SAL)

The probability that a filled unit, after sterilization, might contain a viable organism that survived the sterilization process.

Sterility Assurance Level (SAL)

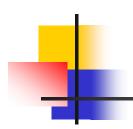
- ➤ For Terminally sterilized units, the probability is 10⁻⁶ or 1 in 1,000,000
- ➤ For Aseptic Processed units, the probability is 10⁻³ or 1 in 1,000 in the 1980's
- With advances in technologies and a better understanding of the process and risk, the contamination rate is quickly approaching 10-6 for aseptic processing

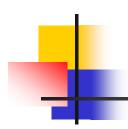
Objective of Aseptic Processing

- To assemble previously sterilized commodities and products, in a highly controlled environment, to produce a sterile unit
- Examples of these environments are
 - Grade A
 - ISO 5
 - Class 100

Aseptic Processing Environments

- Bio-Safety Cabinets
- Laminar Flow Hoods
- Traditional Clean rooms
- Clean Rooms with Curtains or Barriers
- Restricted Access Barrier Systems
- Hard or Soft Wall Isolators


- Basic Knowledge of Microbiology
- Cleaning & Sanitization
- Disinfectant Efficacy
- Contamination Control
- CIP/SIP of Tanks and Piping
- Environmental Monitoring, Validation & Routine
- Aseptic Gowning Methods & Techniques
- Personnel Monitoring Programs


- Room Air Exchanges
- Airflow Studies/Smoke Studies
- Aseptic Techniques
- Contamination Control
- Facility Design & Process Flow
- Heating, Ventilation and Air Condition (HVAC)
- HEPA Filter Grid Pattern and Testing

- Fill Room Validation, IQ, OQ & PQ
- Defining Autoclave Requirements & Validation
- Operator Proficiency Qualification
- Sterilization Methods and Validation
- Lyophilization Process & Validation
- Media Fills/Aseptic Simulation
- Sterility Testing

- Understanding and Confidence in the Process
- Change Control Systems & Requirements
- Trending
- Risk in the Aseptic Processing
- New Technologies
- Global Regulatory Requirements

Develop an Understanding of the following

- What is pharmaceutical processing from a microbial standpoint
- How does each unit operation work and fit into the over aseptic scheme
- Why is each system important to the process

Contamination Control

- Identify the weaknesses in the process
- Modify the process or procedure to compensate for the weakness
- Validate the process
- Ensure all personnel understand the process and how it impacts process operations

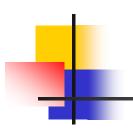
Contamination Control

- Develop strong unit operations of the process
- Develop user friendly SOP's to eliminate errors process confusions
- Provide useful and meaningful training
- Develop a pro-active and not re-active approach to pharmaceutical issues

 What are these and how/why is it associated with processing

Rope Model

- Each fiber is intertwined to make a thread
- The threads are woven together to make a line
- Lines are put together to form a cord
- The cords are intertwined to make a Rope
- Each individual fiber, thread, and cord are put together to make a strong unit
- The more fibers, threads and/or cords that break, the higher the risk of the rope failing


Rope Model

- Each Unit operation of pharmaceutical microbiology is like a strand of a rope
- Identify the basic strands of the ROPE
- Understand the HOW each strand functions
- Learn WHY each strand is important
- The more unit operations that have issues or fail, the higher risk to the product

The Biggest Issue Associated with Aseptic Processing

- Lack of understanding of the overall process
- Companies have experts in the individual departments
- Most companies do not have an expert that understands how the pieces of the puzzle fit into the overall matrix of pharmaceutical processing

Let the Fun Begin!