

David Matsuhiro

Cleanroom Compliance Inc.

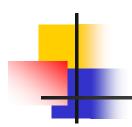
dmatsuhiro@cleanroomcompliance.com

- Location and area of physical building
 - Geographical stability
 - Cost for property
 - Water source
 - Electrical power
 - Waste management


- Climate and seasonal changes
- Future expansion in 5 to 10 years
- Size of the physical building
- Footprint of Critical and Controlled areas
- Minimize Critical work area if possible
- Remember the HEPAs and temperature controls will be on line 24/7 which equates to a significant cost

- Single story building
 - Minimal adjacencies
 - Liquid transfer usually pump or pressure
 - Piping is usually horizontal
 - Increase difficulties to properly slope piping

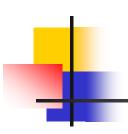
- Multiple story building
 - Adjacencies are increased
 - Liquid transfer using gravity
 - Piping is usually vertical
 - Decreased slope requirements
 - Elevators required


- Type of building
 - Modular
 - Lowered initial costs
 - Speed to market
 - √ Ease of installation
 - ✓ Expandable
 - Needs supports to install items in wall
 - ✓ Reduction in seams 20%

Modular Design Criteria

Modular Design Criteria

Modular Design Criteria



- Vendors
 - Plascore
 - Pharmaduel
 - Cleanpak

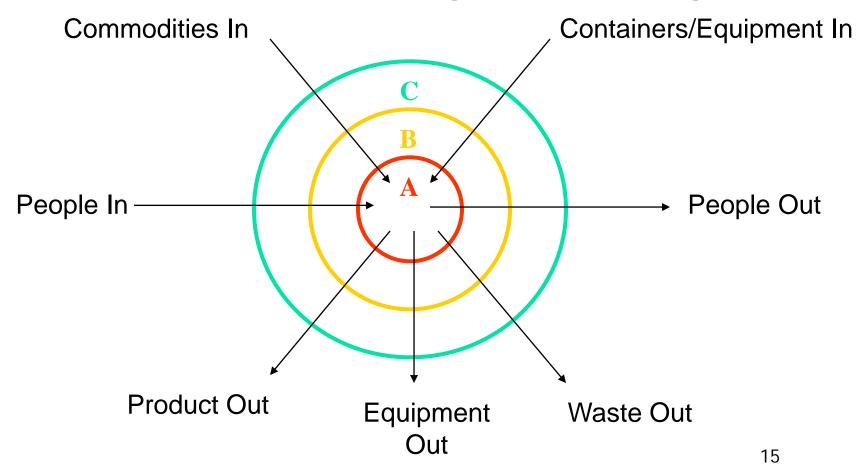
- Type of building
 - Traditional
 - ✓ Longer to market
 - More options
 - Custom build design
 - Significant impact when expanding
 - More dirty/dusty work



- Classification of the fill room
 - Grade-A, full HEPA ceiling
 - Grade-A/B, partial coverage
- Gowning requirements per area
- Personnel required for processing

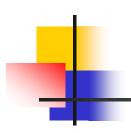
Clean Room

- A room in which environmental parameters are highly controlled to provide a predefined level of control
- Most notably used in the Electronics and Pharmaceutical industries

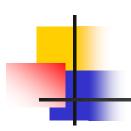


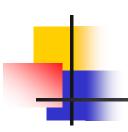
Facility Design Criteria

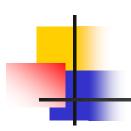
- Nested Zones
 - Critical zones surrounded by lesser
 Classified areas
 - Classical pharmaceutical design


Nested Zones/Single Pass Design

Facility Design Criteria


- Single pass process flow design
- Defined ingress and egress for the facility
 - Personnel
 - Gowning must have a one way flow
 - What is the number of personnel who can gown at a time
 - How many rooms and areas are required

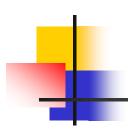

- Single pass process flow design
 - Personnel
 - ✓ Re-gloving area
 - System for stocking gowning supplies
 - De-gowning area must be performed in a separate room
 - Method for removing used gowns


- Single pass process flow design
 - Commodities
 - ✓ Prep
 - √ Storage
 - ✓ Autoclave
 - √ Storage
 - ✓ Pass through
 - ✓ Use
 - ✓ Removal
 - ✓ Cleaning

- Single Pass Design
 - Product
 - Liquid, direct to packaging
 - Freeze dried products
 - Filling
 - Lyo
 - Capping
 - Packaging

- Single Pass Design
 - Waste
 - Wrapping material
 - √ Broken vials
 - Clean up if spills
 - Sanitizing wipes

- Single Pass Design
 - Waste
 - When and how is waste removed
 - During filling operations
 - During breaks
 - End of fill
 - Use of sterile trash bags
 - Defined pass through only for waste


- Single Pass Design
 - Equipment
 - Dedicated equipment
 - Single use equipment
 - Procedures for introducing into the clean room
 - Dedicated pass boxes or large pass throughs

- Filling equipment
 - Traditional
 - Modified aseptic processing
 - Barrier technology
 - Isolator systems
 - Blow/Fill/Seal
 - New Technologies

- Freeze dried and/or liquid product
- Freeze dryer
 - Size, usually too small
 - Functionality and operations
 - Cycle time
 - Type of door opening
 - ✓ Pizza door
 - Regular door swing

- Freeze dryer
 - Automatic loading system
 - Time to validate
 - Distance from filler
 - HEPA cart to transport vials
 - Accessibility to gray spaces

- Freeze dryer
 - * HEPA coverage
 - Where to store trays after loading
 - Environmental locations

- Liquid products
 - Direct to packaging
 - Mouse hole required
 - Classification of fill room to dirty side of mouse hole
 - Movable conveyor to allow access to the back of filler

- Autoclave
 - Proximity to clean room/storage room
 - Interior size
 - What ever the size specification is, double it!
 - Single door or double door single pass

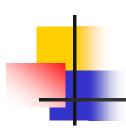
- Autoclave
 - Design of interior rack and cart
 - Storage post sterilization
 - Functionality and/or programs
 - Design of unloading carts
 - HEPA filter for cool down area

Understanding the Methods of Sterilization

Cool Down Zone

- Dry heat oven
 - Area to prep vials and wash dry
 - How are vials covered/wrapped
 - HEPA filter for cool down area
 - Transportation to filling room
 - HEPA cart required

- CIP & SIP
 - Location of the skid
 - Size requirements
 - Longest distance to point of use
 - Transfer panels to tanks


- Integrated vial wash and heat tunnel
- Size and speed of the filling system
- Stainless steel change parts verses Delrin

- Projected number of vials
- Vial sizes
 - Volumes of products being filled
 - Stopper and cap sizes
 - Change parts including pump sizes

- Cleanroom support facilities
 - Formulation area
 - Gowning rooms
 - Preparation of disinfectants
 - Sterile storage areas
 - Glove change

- Cleanroom support facilities
 - Batch record documentation
 - Pass through into clean room
 - Dirty parts wash area
 - Clean parts preparation and storage

- Facility control system
- Visual and audible alarm systems
- Laboratory & office areas
- Viewing corridors
- Gray spaces for equipment


- > HVAC
 - Heating Ventilation and Air Condition
 - Temperature
 - Humidity
 - Controlled
 - ✓ Monitored
 - Building management system
 - Controls all classified areas
 - ✓ Independent of non classified areas

- HVAC
 - Size of HVAC
 - ✓ Cooling capability, from 62 66 °C
 - Individual fans for supply and return
 - Increases ability to control fill room
 - Ability to balance the fill room
 - Supply to terminal filters 90 ft/min at 70% of fan speed or less
 - Differential pressures of 0.5 in of water

- HVAC
 - Segregation of areas by classification or functional areas
 - Cleanroom
 - Freeze dryer area
 - Formulation
 - Gowning/Entrance to area
 - Autoclave/Dry heat oven unload and storage area

- Use materials that resist chipping, flaking, oxidizing and other deterioration
- Compatible with disinfectants
- Durable and easy to maintain
- Does not discolor over time
- Abrasion/Impact resistant

- Floor Material
 - Terrazzo
 - Mipolam
 - Polycarbonate Polymer
 - Epoxy with various grits
 - Perforated Stainless Steel

Materials of Construction

Terrazzo

Materials of Construction

Epoxy with various grits

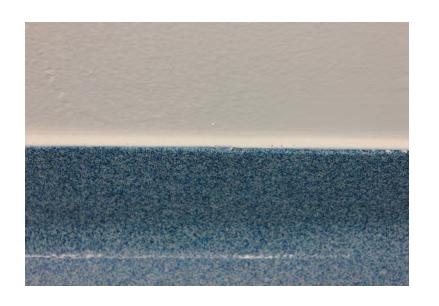


Materials of Construction

Mipolam



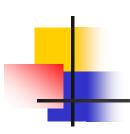
- Floor Material
 - Balance cost of materials with longevity
 - Surface finish from a safety standpoint
 - Evaluate time and cost to repair
 - How well does disinfectant sheet on it

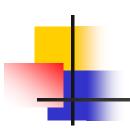


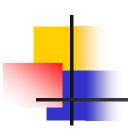
- Floor design
 - Floor to wall interface coved
 - Eliminate difficult to clean areas
 - Radius must be large enough to sanitize with mop
 - Floor to wall interface should be seamless to reduce contamination

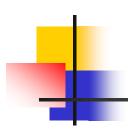
Materials of Construction

Floor to wall interface coved




- Floor design
 - Preparation of floor prior to installing
 - Evaluate the water tables
 - √ Vapor barrier/sealing floors
 - Primary adhesion layer
 - This is the most important aspect to installing a floor


- Floor design
 - Installing floor
 - √ Floor material
 - ✓ Sealing floor
 - Install floor
 - Maintenance of floor


- Ceiling and wall materials
 - Plastic laminates
 - Stainless steel
 - Synthetic panels like Kydex
 - New PVC material

- Ceiling and wall materials
 - Plaster with epoxy paint
 - HEPA filters

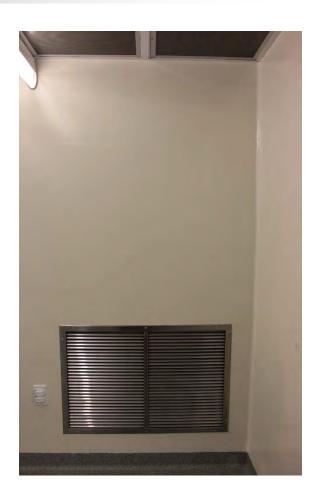
- Specific wall material
 - Flexible curtain
 - Lexan /Plexiglass
 - Glass for a viewing corridor
 - Bumper gards

- Specific wall material
 - Modular partitions
 - Cold Rolled/Cold Annealed (CRCA)
 - Powder coated and durable
 - ✓ Sandwich polyurethane foam (PUF)
 - ✓ Non-flaking, bacterial resistant
 - ✓ Non-corrosive

Materials of Construction and Design

- Air returns
 - Location and number within the room
 - Clean and sanitizable
 - Stainless steel construction
 - Size and shape

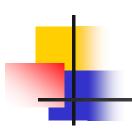
- Air returns
 - Grills inside room
 - Type of cover matrix
 - ✓ Louvers or grills
 - Louver facing up or down
 - Will this effect the airflow
 - Removable for periodic cleaning
 - Wall behind the grill must be finished


- Air returns
 - Low wall returns
 - ✓ Less than 18- inches above floor
 - √ The lower the better

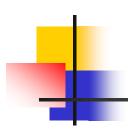
- Air returns
 - Mid wall returns
 - √ Top is approximately
 - √ 36 inches above the
 - ✓ floor
 - ✓ Not recommended

- Air returns
 - High wall returns
 - ✓ Above 5-feet above the floor
 - Old facility design
 - Ceiling returns
 - Old facility design
 - Re-design using a false wall to provide low wall returns

- Air returns
 - Ceiling returns



- Air returns
 - Grills within the wall
 - ✓ The floor is the bottom of the return
 - Keep very low on the wall
 - Grill is not visible and therefore can be blocked.
 - Check as a line clearance item
 - Use a stainless steel rod with a polished flat surface
 - Recommended design feature



- Air returns
 - Grills within the door
 - Mid to low wall location
 - Minimizes depressurization of the room
 - Grill is not visible and therefore can be blocked.
 - Check as a line clearance item
 - Use a stainless steel rod with a polished flat surface
 - Recommended design feature

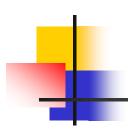
Door air returns

- Ceiling
 - Compatible with HEPA and light grid
 - Panels must seal tight to ceiling grid
 - ✓ Gel track
 - ✓ Silicon
 - Silicon foam
 - ✓ Adhesive

- Ceiling lights
 - Recessed /flat
 - Tear drop
 - Small LED

Lights

LED Lights



Lights

- Ceiling and Wall considerations
 - Cost and durability
 - Does disinfectant sheet well on the surface or form droplets
 - How well does the material seam together

- Doors
 - Construction
 - Welded, ground and finished joints
 - √ Seamless frame
 - No seals between door and frame
 - Vented returns in the door
 - Clean room stainless hinges

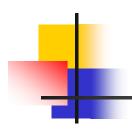
- Doors
 - Single or double door
 - Sliding or hinged
 - Door swing into, or out of the room
 - Confirm doors do not block returns
 - Differential pressure does not prevent the door from closing

Doors

- Manual opening
 - ✓ Turn handle
 - ✓ Push plate
 - ✓ Pull bar
- Automatic
 - ✓ Push plate
 - Flushed wall mounted sensors
 - ✓ Vertical non exposed sensor

Doors

Doors



Materials of Construction

- Work Surfaces
 - Stainless Steel
 - Solid not perforated
 - Clean and sanitizable
 - Lowest useable shelf must be above the top of air return

Materials of Construction

Work Surfaces

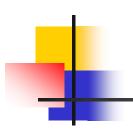
Materials of Construction

- Work Surfaces
 - Carts
 - Clean and sanitizable
 - √ Finished edges
 - Non-ball bearing wheels
 - Wheels must be cleanable and cleaned with room
 - Lowest useable shelf must be above the top of air return

Materials of Construction

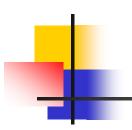
Cart Work Surfaces

- Work Surfaces
 - Tables
 - Underside must be cleaned and sanitizable
 - ✓ If in the Grade-A areas, must be 6inches off the wall
 - Does not block air returns
 - Consider fixing to wall or floor for consistency


- Work Surfaces
 - Tables

- Work Surfaces
 - Storage Racks
 - Wire racks are extremely difficult to clean/sanitize
 - Lowest useable shelf above top of return vents
 - Confirm it does not block returns
 - Evaluate the number required

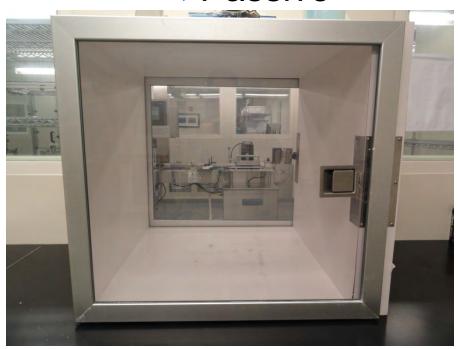
- Work Surfaces
 - Storage Racks


- Pass through
 - Optimize size and locations
 - Confirm door swing is acceptable
 - Doors interlocked
 - Stainless steel material of construction

- Pass through
 - Glass/Lexan to see inside
 - HEPA filter above pass box opening to the fill room
 - Clean room pass through
 - ✓ Hinges
 - Door handles
 - Gaskets required or not

- Pass through
 - Active
 - Automated system with HEPA's and return ducts
 - Very expensive and not usually recommended
 - Can be difficult to validate
 - Minimal contact time for items sanitized with alcohol due to the air movement within

- Pass through
 - Active



- Pass through
 - * Passive
 - Manual system
 - ✓ Inexpensive
 - Easy to install and validate
 - Good contact time for items sanitized with alcohol

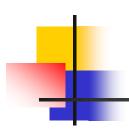
- Pass through
 - Passive

- Stacked pass through
 - Entrance
 - Top for equipment and supplies
 - Bottom for large items and carts
 - Exit
 - Top for dirty/used items and equipment
 - ✓ Bottom trash

- Grade A
 - The highest standard of air/surface cleanliness
 - Full aseptic gowning required
 - Areas where product, sterile components and sanitized equipment are exposed to HEPA filtered air

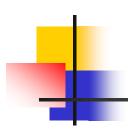
- Grade A
 - Full HEPA coverage over the critical areas
 - Uniform laminar flow air required
 - Design criteria for the velocity of air at the filter face is 90 ft/min ± 20%
 - Room air changes per hour: 100 300

- Grade A
 - Placement and number of return vents is critical
 - Direction of air flow is extremely important in the critical areas
 - Minimize turbulent air flow if possible
 - Use the first air concept


- Grade B
 - The second highest standard of air/surface cleanliness
 - Surrounds or is adjacent to the Grade A aseptic processing areas
 - Critical airlocks within the aseptic areas
 - Full aseptic gowning required

- Grade B
 - Full HEPA ceiling not required
 - Laminar air flow not required
 - Design criteria for the velocity of air at the filter face is 90 ft/min ± 20%

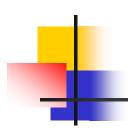
- Grade B
 - Room air changes per hour: Approximately 100 for good air flow
 - This design should meet the at rest Grade A environmental monitoring criteria
 - Clean side of the aseptic gowning room


- Grade C
 - Room air changes per hour: Greater than 30, however greater than 75 for good air flow in the gowning room
 - Area used for handling of primary materials and preparation of solutions and/or commodities that will be sterilized

- Grade C
 - Used for preparation, washing and cleaning of non-sterile equipment and materials
 - Equipment airlocks leading to Grade B areas
 - Initial aseptic gowning areas

- Grade D
 - Initial preparation and washing of components

- Put together an experienced and knowledgeable design team
- Team must encompass line operators, senior management and consultants
- The more information the company provides the design firm, the better the final outcome


- Identify firm capable of providing all requirements of the facility
- Reputable company with significant number of various build designs
- Assess regulatory compliance of previous designs

- Visit facilities to determine additional information
- Evaluate ISPE facility design awards
- Assess and understand what is considered cGMP. The key word is current.
- Many companies have a template that may be out of date

- Identify a single individual that understands all aspects of the facility design
- Not just the design of the facility but the process that will occur
- The project manager needs to understand how all the pieces to the puzzle fit
- If the pieces do not fit, the project will be significantly delayed

Takeaway Message

- Get Quality involved with facility design based on sampling requirements
- Ensure qualified personnel review plans. Confirm plans are cGMP and not old designs
- Budget for all the nice to haves because it will make operations easier
- Design for 5 years into the future