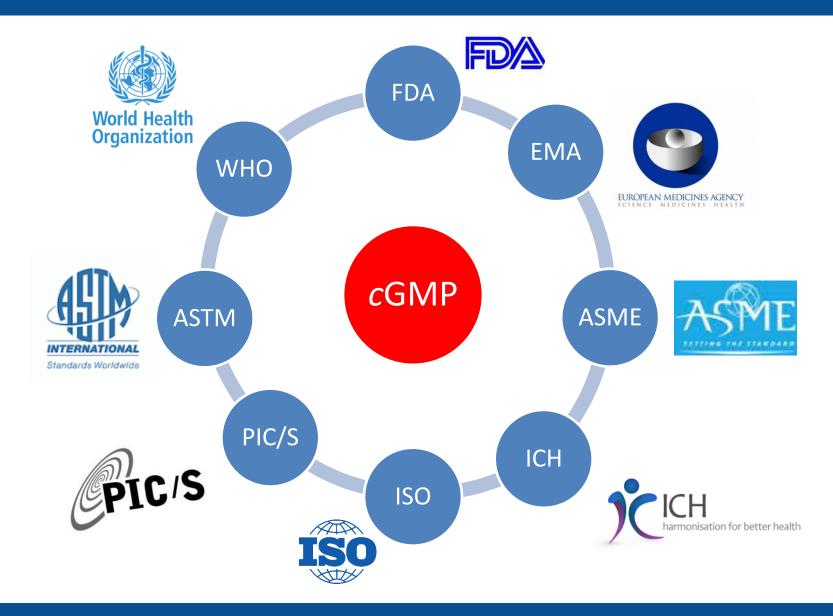


Validation of Sterilizing Filtration Operations Using Quality by Design Principles

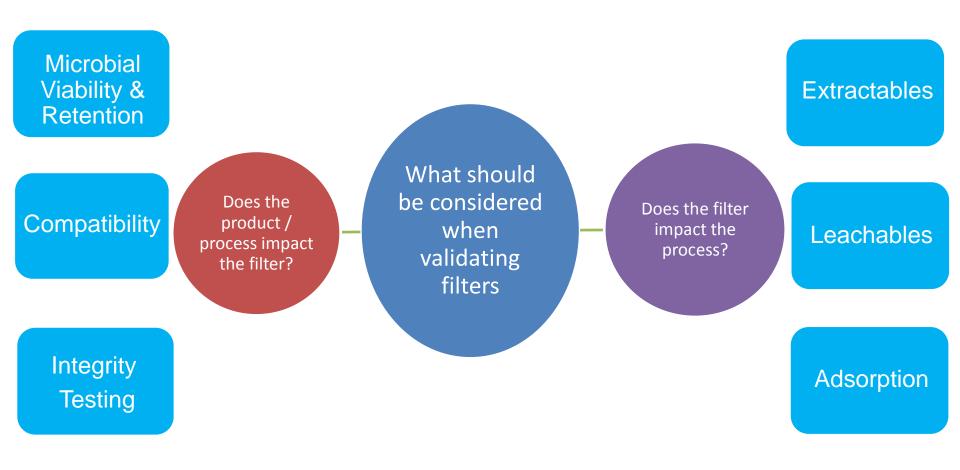
Presenter: Juan Centeno


Validation Overview

- 1. Regulatory and Reference Guidelines
- 2. General Considerations
- 3. Deliverables
- 4. When to Consider Validation

1. Regulatory And Reference Guidelines

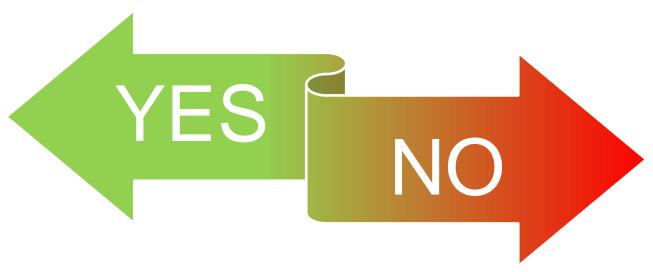
1. Regulatory Perspective


FDA Definitions¹

- Sterilizing Filter
 - "A filter that, when appropriately validated, will remove all microorganisms from a fluid stream, producing a sterile effluent"
- Validation
 - "Establishing documented evidence which provides a high degree of assurance that a specific process will consistently produce a product meeting its predetermined specifications and quality attributes"
- Validation studies assure product quality and patient safety requirements are satisfied under worst case conditions

1: FDA Guidance for Industry –Sterile Drug Products Produced by Aseptic Processing – Current Good Manufacturing Practice September, 2004, p 58

2. General Considerations: Process Specific Validation

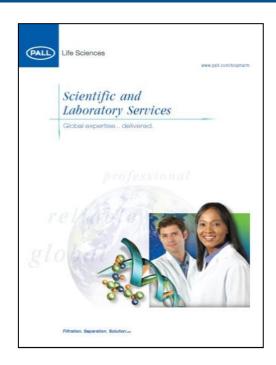


2. General Considerations: Supplier's Data

What are the validation needs for the specific application?

Is the supplier data sufficient, high-quality and brackets process conditions?

Data can be used for process validation


User-specific process validation must be performed

2. General Considerations: Validation Services

Considers:

- Critical product attributes
- Process parameters
- Scientific rationale
- Worst-case conditions
- Use of actual products wherever possible

Complies with:

- Regulatory expectations
- Standard test methods (e.g. ASTM F838)
- Guidelines of Parenteral Drug Association Technical Report
 26 and 66

Viability

 Establishes fluid and/or process conditions as bactericidal, moderately bactericidal or non-bactericidal (this must be known before challenge)

Bacterial Challenge

 Qualifies that filter produces sterile filtrate (using 3 membrane lots – at least one filter lot at or near the minimum filter manufacturing specification - Concentration > 1 x 10⁷ CFU/cm² with *B. diminuta*)

Test Parameters Determination*

 Product Wet Integrity Test establishes filter integrity test values for process filter wet with process fluid

Compatibility

 Evaluates filter integrity before and after exposure to "worst-case" conditions

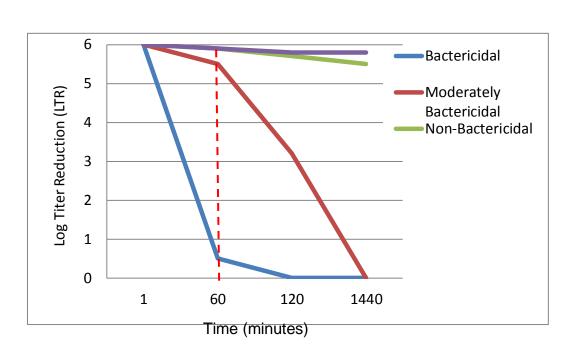
Adsorption

 Quantifies components adsorbed onto filter membrane – helps with filter selection – minimizes product loss/adsorption

Extractables

 Produces quantitative and qualitative information under worst case conditions (GC/LC/ICP/MS, NVR/FTIR)

Leachables#


 Produces quantitative and qualitative information using actual process fluid (or placebo) under actual or slightly worst case conditions, including filter/system flush (NVR/FTIR, GC/LC/ICP/MS)

^{*}optional not considered a regulatory requirement for submission

3. Deliverables: Bacterial Viability and Flush Testing

- Determine the viability of Brevundimonas diminuta (or other test bacterium) in process fluid
 - Process time
 - Temperature

Viability

 Establishes fluid and/or process conditions as bactericidal, moderately bactericidal or non-bactericidal (this must be known before challenge)

Bacterial Challenge

 Qualifies that filter produces sterile filtrate (using 3 membrane lots – at least one filter lot at or near the minimum filter manufacturing specification - Concentration > 1 x 10⁷ CFU/cm² with *B. diminuta*)

Test Parameters Determination*

 Product Wet Integrity Test establishes filter integrity test values for process filter wet with process fluid

Compatibility

 Evaluates filter integrity before and after exposure to "worst-case" conditions

Adsorption

 Quantifies components adsorbed onto filter membrane – helps with filter selection – minimizes product loss/adsorption

Extractables

 Produces quantitative and qualitative information under worst case conditions (GC/LC/ICP/MS, NVR/FTIR)

Leachables#

 Produces quantitative and qualitative information using actual process fluid (or placebo) under actual or slightly worst case conditions, including filter/system flush (NVR/FTIR, GC/LC/ICP/MS)

^{*}optional not considered a regulatory requirement for submission

3. Deliverables: Options For Bacterial Retention Test

Fluid Type

- Challenge performed by inoculating bacteria into the process fluid directly
- Recovery filters flushed and plated

Non -Bactericidal

- Fluid recirculated for process time, followed by shortterm challenge using fluid inoculated with test bacteria
- Recovery filters flushed and plated

Moderately Bactericidal

- Fluid recirculated for process time
- Test system flushed
- Challenge using surrogate solution (based on surface tension) inoculated with test bacteria

Bactericidal

3. Deliverables: Bacterial Retention Test

- Brevundimonas diminuta (ATCC 19146) or other "worst-case" bioburden isolate
- Includes three test filters from three different lots
 - Including one minimum specification filter membrane lot
- Controlled culture conditions (ASTM F838-05)
- Demonstrate penetration of 0.45 μm rated control filter
 - Minimal size (B. diminuta 0.3 x 0.8 μm)
 - Monodispersed
- Simulate "worst-case" process conditions
 - Process time
 - Temperature
 - Pressure or flowrate
- Total challenge ≥ 1 x 10⁷ CFU/cm²
- Analyze total effluent for sterility

3. Deliverables: Studies With Process Isolates

- "In certain cases, when justified as equivalent or better than use of *B. diminuta*, it may be appropriate to conduct bacterial retention studies with a bioburden isolate".¹
 - Process isolates eg. waterborne bacteria
 - Developing customized microbiological procedures
 - Challenging filters using specific process isolates

1: FDA Guidance for Industry – Sterile Drug Products Produced by Aseptic Processing – Current Good Manufacturing Practice September, 2004, p 27

Viability

 Establishes fluid and/or process conditions as bactericidal, moderately bactericidal or non-bactericidal (this must be known before challenge)

Bacterial Challenge

 Qualifies that filter produces sterile filtrate (using 3 membrane lots – at least one filter lot at or near the minimum filter manufacturing specification - Concentration > 1 x 10⁷ CFU/cm² with *B. diminuta*)

Test Parameters Determination*

 Product Wet Integrity Test establishes filter integrity test values for process filter wet with process fluid

Compatibility

 Evaluates filter integrity before and after exposure to "worst-case" conditions

Adsorption

 Quantifies components adsorbed onto filter membrane – helps with filter selection – minimizes product loss/adsorption

Extractables

 Produces quantitative and qualitative information under worst case conditions (GC/LC/ICP/MS, NVR/FTIR)

Leachables#

 Produces quantitative and qualitative information using actual process fluid (or placebo) under actual or slightly worst case conditions, including filter/system flush (NVR/FTIR, GC/LC/ICP/MS)

^{*}optional not considered a regulatory requirement for submission

3. Deliverables: Product-Wet Integrity Test Values

- Establishes filter integrity test values for process filtration assembly wet with process fluid
- Values are determined for filter wet with customer fluid and correlated to reference fluid-wet value (typically water)
 - Filter wetted with water then perform FF test at increasing test pressures
 - Ratio applied to reference wet parameters to determine product wetted parameters
- Product-wet values derived from test data

Viability

 Establishes fluid and/or process conditions as bactericidal, moderately bactericidal or non-bactericidal (this must be known before challenge)

Bacterial Challenge

 Qualifies that filter produces sterile filtrate (using 3 membrane lots – at least one filter lot at or near the minimum filter manufacturing specification - Concentration > 1 x 10⁷ CFU/cm² with *B. diminuta*)

Test Parameters Determination*

 Product Wet Integrity Test establishes filter integrity test values for process filter wet with process fluid

Compatibility

 Evaluates filter integrity before and after exposure to "worst-case" conditions

Adsorption

 Quantifies components adsorbed onto filter membrane – helps with filter selection – minimizes product loss/adsorption

Extractables

 Produces quantitative and qualitative information under worst case conditions (GC/LC/ICP/MS, NVR/FTIR)

Leachables#

 Produces quantitative and qualitative information using actual process fluid (or placebo) under actual or slightly worst case conditions, including filter/system flush (NVR/FTIR, GC/LC/ICP/MS)

^{*}optional not considered a regulatory requirement for submission

3. Deliverables: Compatibility Assessment

- Confirms maintenance of filter integrity after exposure to "worstcase" fluid and process conditions:
 - Filter sterilization conditions
 - Gamma irradiation
 - Steam sterilized
 - Process temperature
 - Duration
- Compatibility determined by performing integrity tests on filter pre- and post-fluid exposure and visual examination of filter

Viability

 Establishes fluid and/or process conditions as bactericidal, moderately bactericidal or non-bactericidal (this must be known before challenge)

Bacterial Challenge

 Qualifies that filter produces sterile filtrate (using 3 membrane lots – at least one filter lot at or near the minimum filter manufacturing specification - Concentration > 1 x 10⁷ CFU/cm² with *B. diminuta*)

Test Parameters Determination*

 Product Wet Integrity Test establishes filter integrity test values for process filter wet with process fluid

Compatibility

 Evaluates filter integrity before and after exposure to "worst-case" conditions

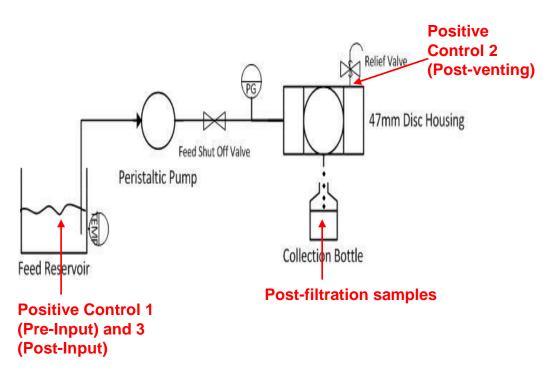
Adsorption

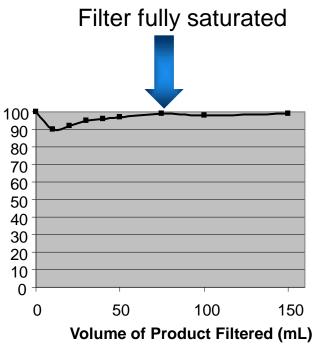
 Quantifies components adsorbed onto filter membrane – helps with filter selection – minimizes product loss/adsorption

Extractables

 Produces quantitative and qualitative information under worst case conditions (GC/LC/ICP/MS, NVR/FTIR)

Leachables#


 Produces quantitative and qualitative information using actual process fluid (or placebo) under actual or slightly worst case conditions, including filter/system flush (NVR/FTIR, GC/LC/ICP/MS)


^{*}optional not considered a regulatory requirement for submission

3. Deliverables: Adsorption Testing

- To quantify the amount of component(s) adsorbed from the product onto the filter membrane under processing conditions
- To enable calculation of volume of product which should be flushed through process filter to ensure saturation

Viability

 Establishes fluid and/or process conditions as bactericidal, moderately bactericidal or non-bactericidal (this must be known before challenge)

Bacterial Challenge

 Qualifies that filter produces sterile filtrate (using 3 membrane lots – at least one filter lot at or near the minimum filter manufacturing specification - Concentration > 1 x 10⁷ CFU/cm² with *B. diminuta*)

Test Parameters Determination*

 Product Wet Integrity Test establishes filter integrity test values for process filter wet with process fluid

Compatibility

 Evaluates filter integrity before and after exposure to "worst-case" conditions

Adsorption

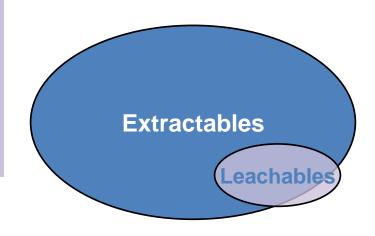
 Quantifies components adsorbed onto filter membrane – helps with filter selection – minimizes product loss/adsorption

Extractables

 Produces quantitative and qualitative information under worst case conditions (GC/LC/ICP/MS, NVR/FTIR)

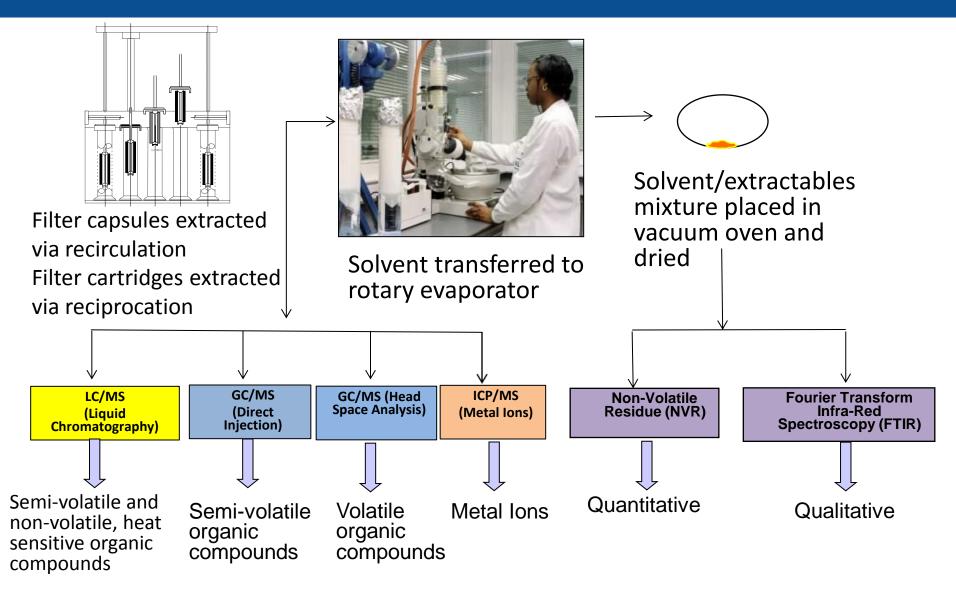
Leachables#

 Produces quantitative and qualitative information using actual process fluid (or placebo) under actual or slightly worst case conditions, including filter/system flush (NVR/FTIR, GC/LC/ICP/MS)

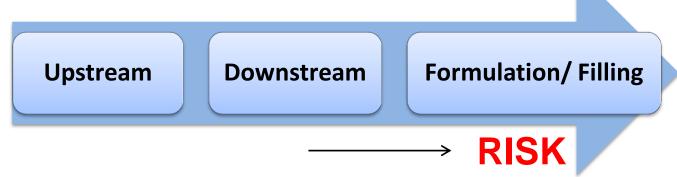

^{*}optional not considered a regulatory requirement for submission

3. Deliverables: Definitions (BPSA) of Extractables/Leachables

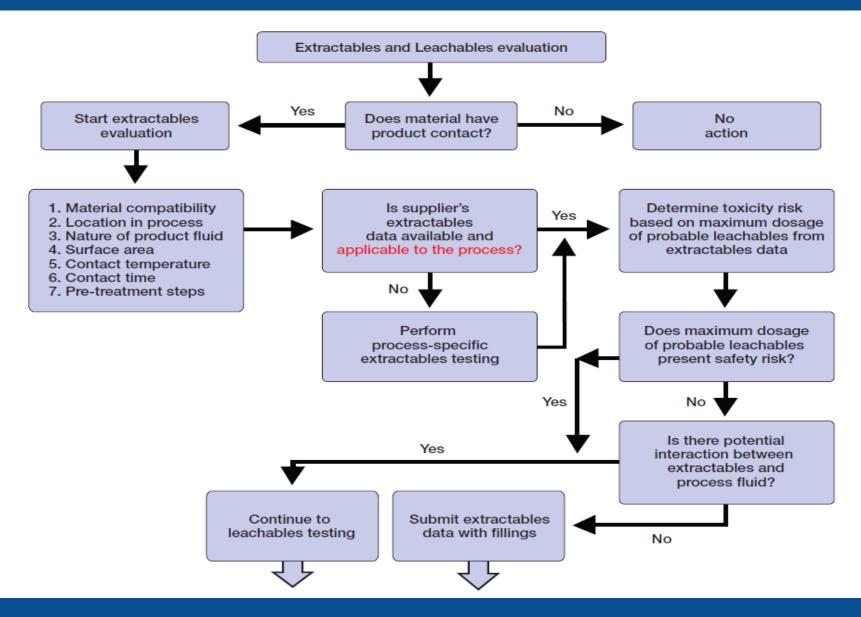
Chemical compounds that migrate from any product contact material, when exposed to an appropriate solvent under exaggerated conditions of time and temperature


Chemical compounds, typically a subset of extractables, that migrate into the drug formulation from any product contact material, as a result of direct contact with the drug formulation under normal process conditions or accelerated storage conditions and are found in the final drug product.

Reference: BPSA (Bio-Process Systems Alliance) "Recommendations for Extractables and Leachables from Single-Use Systems"

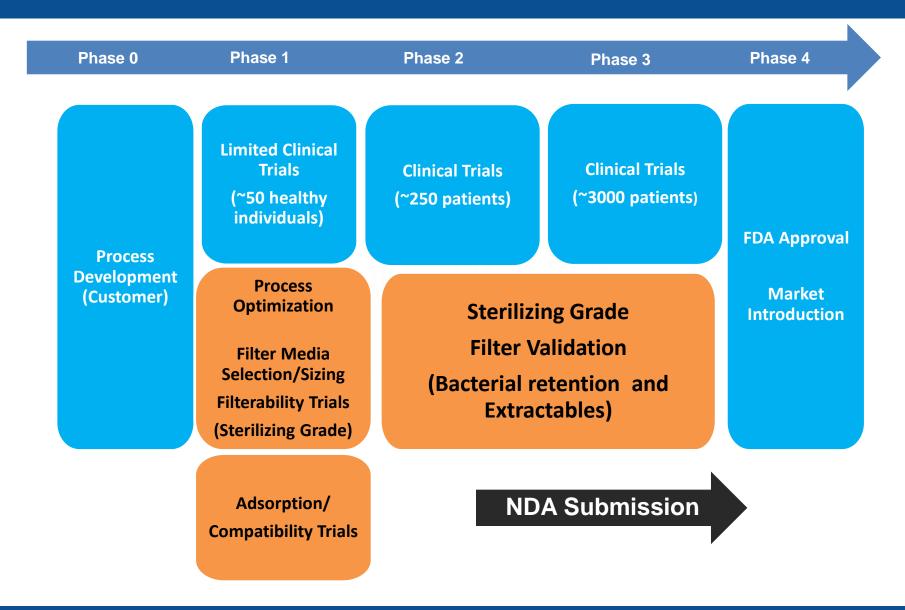

3. Deliverables: Extractables Testing – Test Methods

3. Deliverables: Assessing Process Application Risk for E&L


- Upstream media preparation
 - Cytotoxicity, protein reactivity
- Downstream protein reactivity
 - Leachables removed at UF/DF step
 - Buffer preparation
 - Ultrafiltration / diafiltration
- Formulation patient safety, stability
 - API / bulk drug sterilization
 - Final product formulation, sterilization, filling

Identify materials that may introduce leachables

Perform risk assessment


3. Deliverables: Risk Assessment Decision Tree

4. When to Consider Validation

Summary

Regulatory Expectations

Validation of Sterilizing Filter

Process Conditions

Validation Testing