

Connecting People, Science and Regulation

PDA Workshop

Development and Manufacturing of Pre-filled Syringes

Vienna, Austria - Friday November, 10th 2017

Glass Pre-filled containers

Alessandro Morandotti (Ompi)

Connecting People, Science and Regulation

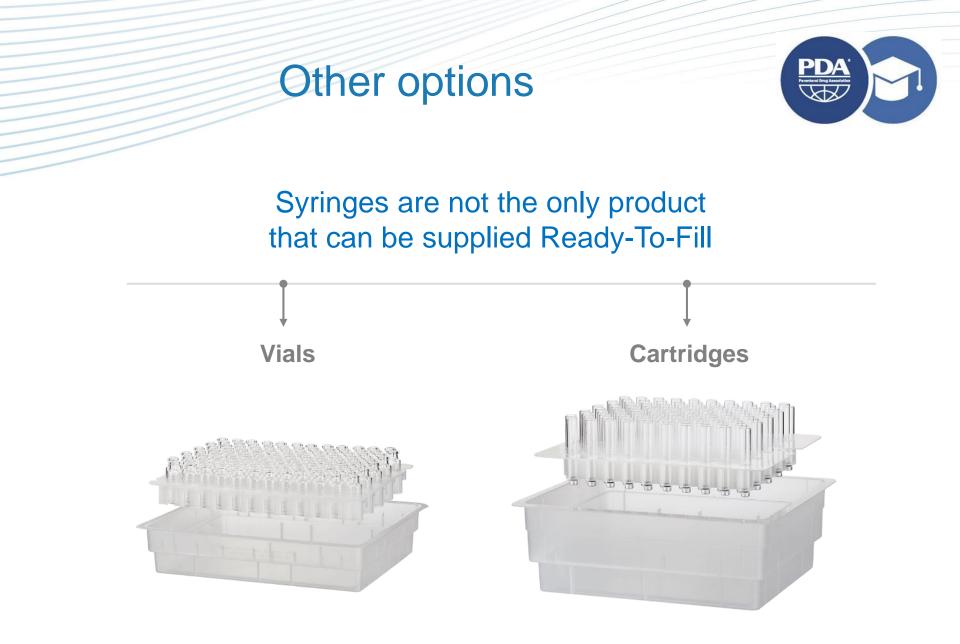
Agenda

- Chemical, physical and functional properties
- Manufacturing overview
- Quality Trends

Definition of Pre-filled Syringes

Bulk syringes unsterile and were delivered packed in trays.

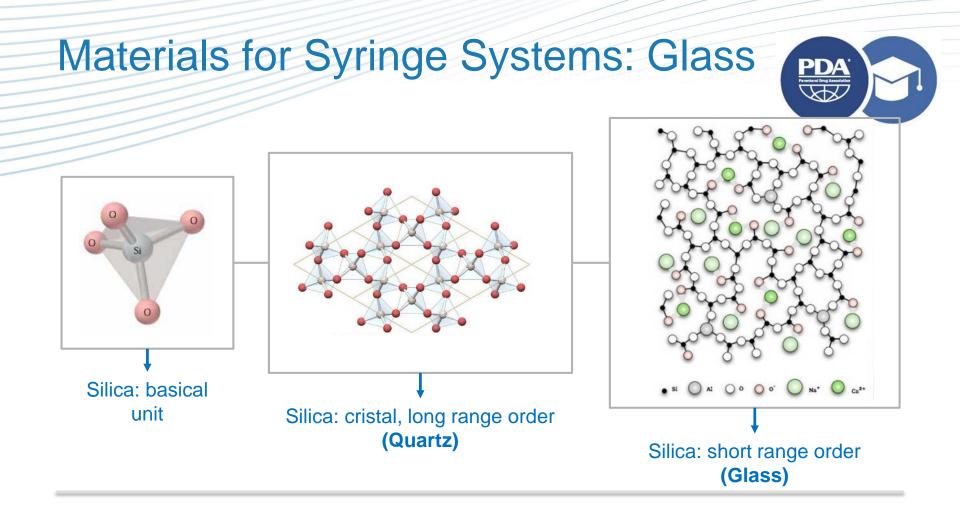
Bulk Syringes



Pre-Sterilized syringes are delivered in tub and nest and are ready for filling at Customers.

Pre-fillable Syringes

PDA Education © 2017 Parenteral Drug Association


PDA Education © 2017 Parenteral Drug Association

Materials for Syringe Systems

GLASS

PDA Ed

- Glass is non-crystalline solid material obtained by cooling a supercooled liquid.
- It is a non organic material.
- It has an amorphous structure, obtained with solidification without crystallization.

In industry, glass is the result of chemical combination of raw materials available in nature, synthetic elements and glass cullet

Glass composition and types

Glass for Parmaceutical purposes is composed by:

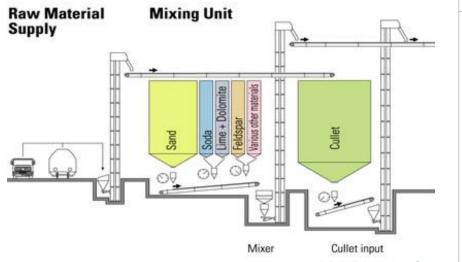
Network former: SiO_2 Network modifiers: Na_2O , K_2O , B_2O_3 Stabilizers to improve durability: CaO, Al_2O_3 Colorants (amber glass): Fe_2O_3 - TiO_2 *Neutral glass* is a borosilicate glass containing significant amounts of boric oxide, aluminium oxide, alkali metal oxides and/or alkaline earth oxides in the glass network. Due to its composition, neutral glass has a high hydrolytic resistance and a high thermal shock resistance.

Soda-lime-silica glass is a silica glass containing alkali metal oxides, mainly sodium oxide, and alkaline earth oxides, mainly calcium oxide, in the glass network. Due to its composition, soda-lime-silica glass has only a moderate hydrolytic resistance.

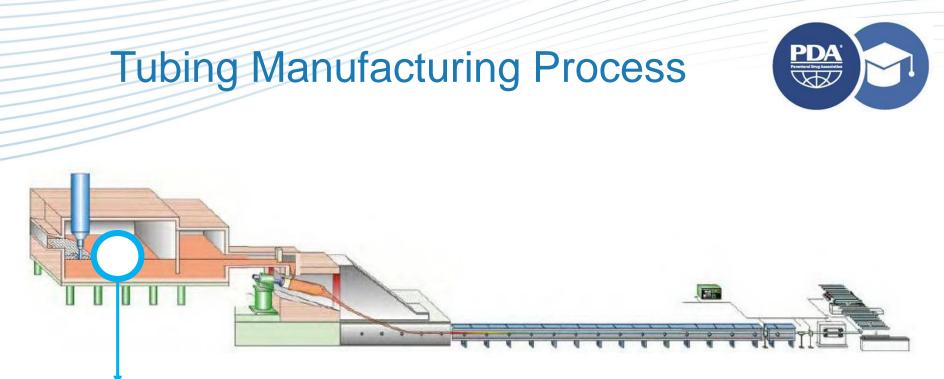
		ATE GLASS Il glass)	SODA-LIME GLASS			
	Exp. 3.3 group	Exp. 5.1 group	Exp. 7.8 – 9.5			
SiO ₂	80 - 82	69 - 75	70 - 75			
B ₂ O ₃	12 - 13	7 - 12	0 - 1			
Al ₂ O ₃	2 - 3	5 - 8	2 - 4			
Na ₂ O / K ₂ O	3 - 5	7 - 11	12 - 16			
CaO / MgO / BaO	0	1.5 - 4	10 - 15			
Working Point	1250 – 1260 °C	1110 – 1170 °C	1015 – 1045 °C			
Transition Temperature	525 – 555 °C	545 – 570 °C	525 – 540 °C			

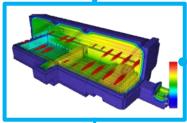
Connecting People, Science and Regulation®

PDA Education © 2016 Parenteral Drug Association

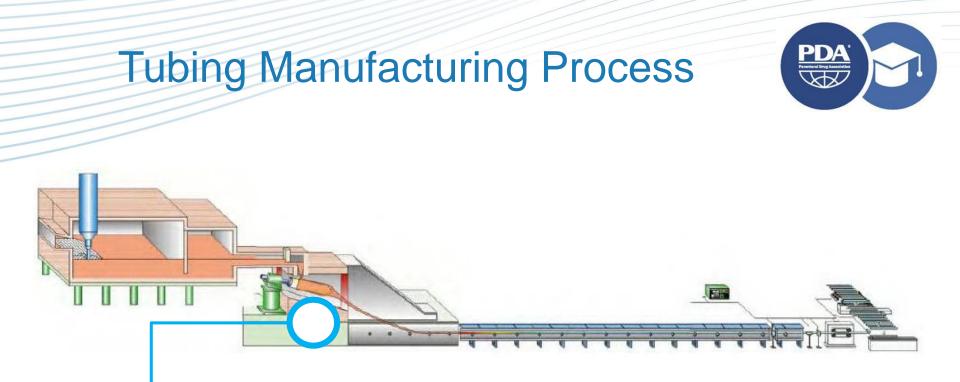

Tubing Manufacturing Process

THE BATCH HOUSE


Raw materials are dowloaded in sylos and then mixed with cullet to obtain the right batch formulation



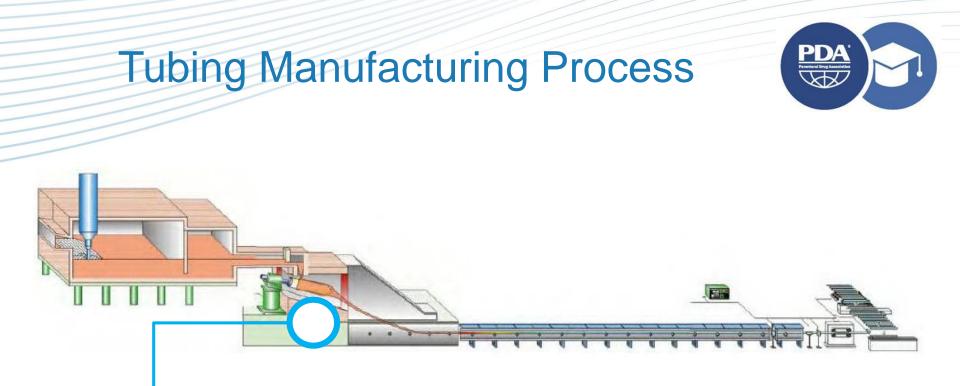
PDA Education © 2017 Parenteral Drug Association



THE FURNACE

The batch formulation is melted in the furnace: a lot of chemical reactions among the chemical elements start and, at the end of the process, glass is ready to be formed as tube

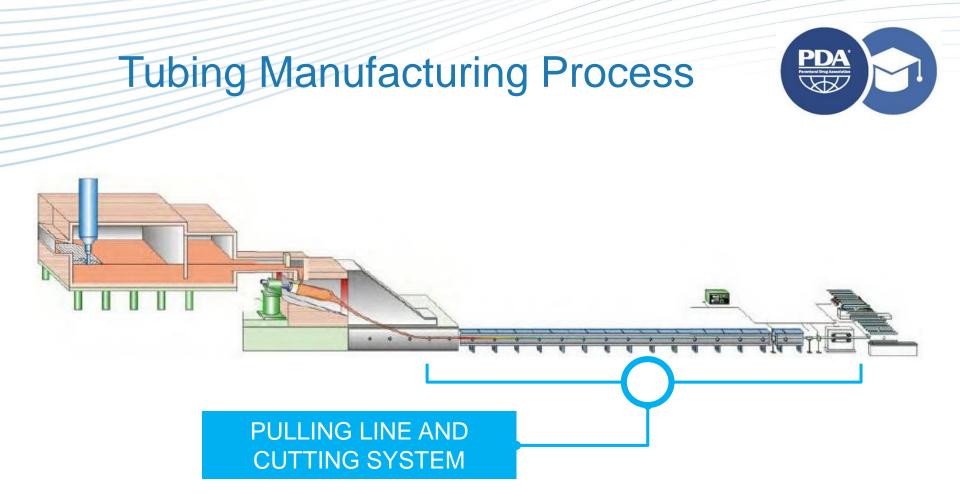
PDA Education © 2017 Parenteral Drug Association

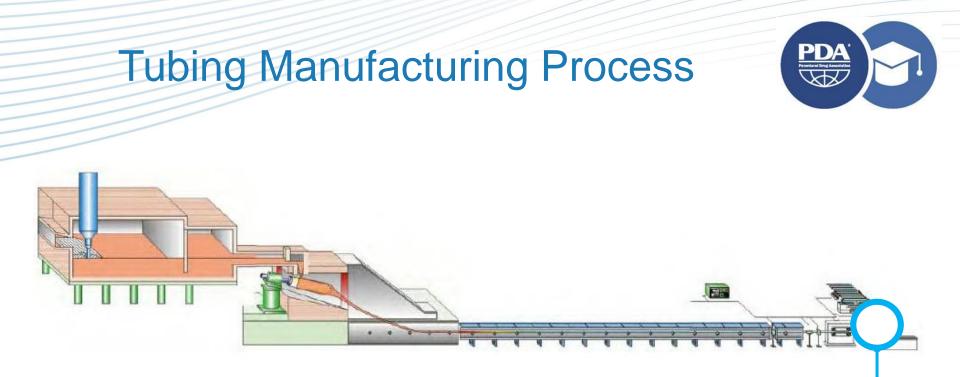


FORMING SYSTEMS

Danner Mandrel

- Rotating system
- T glass ≈ 1200° C
- Flexible: big range of sizes can be produced, from 2 mm OD up to 60 mm
- Widely used in Europe and Asia




FORMING SYSTEMS

Vello Mandrel

- Not rotating system
- T glass ≈ 1000° C
- Mostly used in US

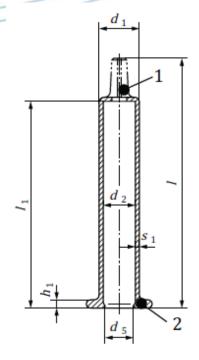
- The tube is drawn for around 50 m to cool down
- Several inspection systems check the quality of the tube (visual and dimensional parameters) with automatic rejection in case of failure
- High speed rough cutting system

TRIM, GLAZING AND FINAL PACKAGING

- The ends of the tubes are trimmed to obtain a flat surface
- Ends are glazed with flames
- Tubing are packed in bundles

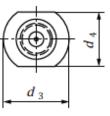


CORNING

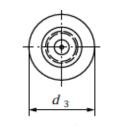

Non limitative list PDA Education © 2017 Parenteral Drug Association

ISO 11040-4 Syringes

Dimensions in millimetres



Nominal	Glass barrel										Finger flange					
volume	<i>d</i> 1	L	d ₂		d ₅	<i>l</i> 1		lc.		s_1^c	h1		<i>d</i> ₃		d4	
ml	nom	tol	nom	tol	min.	nom.	tol.	nom.	tol.	ж	nom.	tol.	nom.	nom.	nom.	tol.
0,5	6,85		4,65	±0,1	4,40	47,6		57,5		1,1	1,8	±0,5	13,4	±0,4	10,5	±0,4
1ª	8,15		6,35]	6,05	54		64,0	±0,5	0,9	1,9		13,8	1	11	
1 ^b	10,85	±0,1	8,65		8,25	35,7	±0,5	46,7]	1,1	2,2		17,75		14,7	
2	10,85		8,65]	8,25	49		60,0		1,1	2,2		17,75	±0,75	14,7	
2,25	10,85		8,65		8,25	54,4		66,6	±0,75	1,1	2,2	±0,5	17,75		14,7	±0,5
3	10,85		8,65	±0,2	8,25	72,2		84,4	±1,0	1,1	2,2		17,75		14,7	
5	14,45		11,85]	11,45	66,7	±0,75	80,0	±0,75	1,3	2,4		23		19,5	
10	17,05	±0,2	14,25		13,85	87,25		100,5	±1,0	1,4	2,5	±0,6	27	±1	21,5	
20	22,05		19,05		18,40	96,8		114,9	±1,0	1,5	3,1		32,25		25,9	±0,6
 Long version. Short/standard version. 																


4.5

Dimension on total barrel length and wall thickness are for information only.

Dimensions in millimetres

a) cut-flange

b)round flange

c) small-round flange

PDA Education © 2017 Parenteral Drug Association

ISO 8362-1 Vials

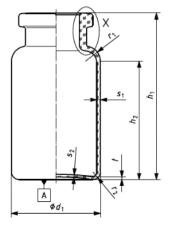
Overflow

2R

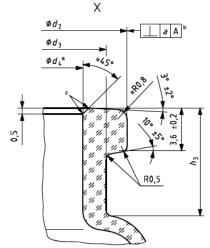
4R

6R

8R


30R

37,5



t

22,7

Dimensions in millimetres

Size designation of injection vial d_1 d_2 d_3 d_4 h_1 h_2 h_3 Mass r_1 a r_2 s1 *s*₂ capacity ml mm g +0,2 -0,3 tol tol. max. ± 0,2 tol. min. tol. tol. min. == == max = 4 35 22 5 16 ± 0,15 13 10,5 7 8 2,5 1,5 1 0,6 6 45 32 6,1 ± 0,5 10 40 26 8,3 ± 0,5 8,5 ± 0,5 1 ± 0,04 0,7 22 3,5 11,5 45 31 9,4 1,2 ±0,2 16,5 2 13,5 45 10,2 10R 30 9 4,0 ±1 24 12,6 0,7 19 20 60 45 12,8 15R 55 20R 26 35 17,4 32,5 17,5 45 25R ± 1.5 1.5 30 ± 0.25 65 ± 0.7 10 ±0,75 5,5 2,5 1,2 ± 0,05 1 20

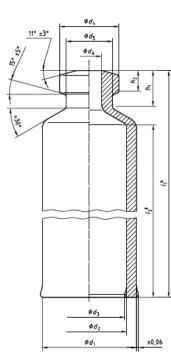
55

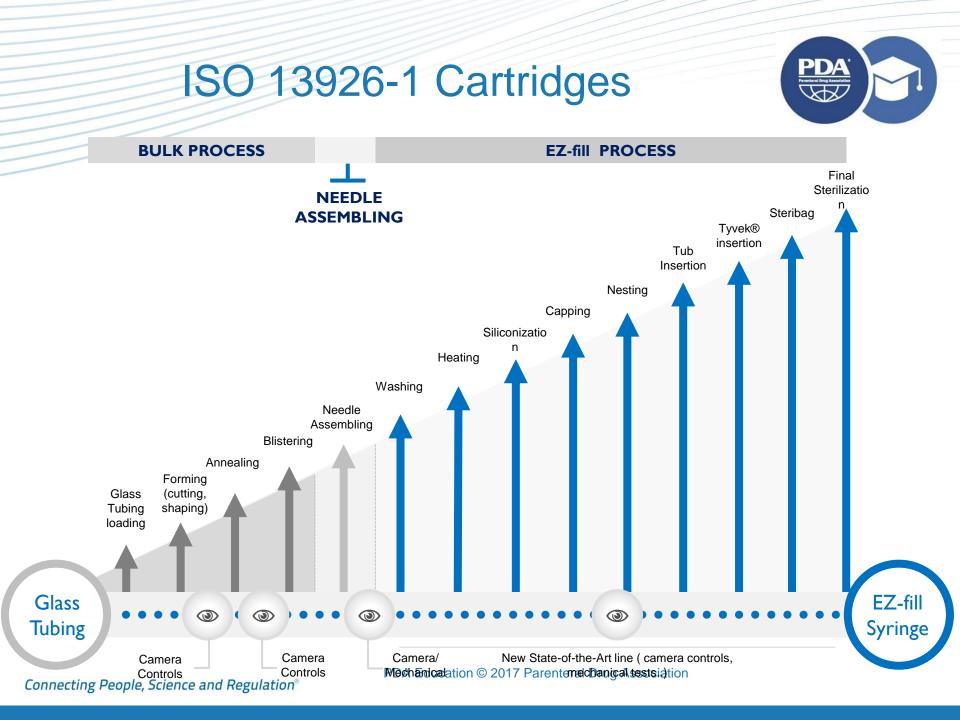
75

Table 1 — Dimensions, overflow capacity and mass

PDA Education © 2017 Parenteral Drug Association

ISO 13926-1 Cartridges




Table 1 — Dimensions of glass cylinders for pen-injectors

Dimensions in millimetres

d_1	tol.	d_2	tol.	d_3	d_4	tol.	d_5	tol.	d_6	tol.	h_1	tol.	h_2	tol.
	±		±	min.		±		±		±		±		±
8,65	0,1	6,85	0,1	6,55	7,15	0,2	5,5	0,35	3,15	0,2	5,0	0,20	2,9	0,1
10,85	0,1	8,65	0,1	8,35	7,15	0,2	5,5	0,35	3,15	0,2	5,0	0,20	2,9	0,1
10,95	0,15	9,25	0,1	8,95	7,15	0,2	5,5	0,35	3,15	0,2	5,0	0,20	2,9	0,1
11,60	0,15	9,65	0,1	9,35	7,15	0,2	5,5	0,35	3,15	0,2	5,0	0,20	2,9	0,1
14,00	0,15	12,00	0,15	11,65	9,5	0,2	7,6	0,35	4,5	0,2	5,0	0,50	2,9	0,15
14,45	0,15	11,85	0,15	11,50	9,5	0,2	7,6	0,35	4,5	0,2	5,0	0,50	2,9	0,15
18,25	0,15	16,05	0,15	15,50	9,5	0,2	7,6	0,35	4,5	0,2	5,0	0,50	2,9	0,15

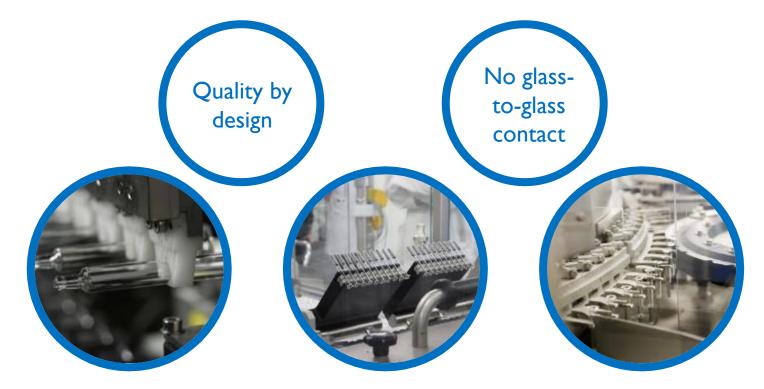
^a Lengths l_1 and l_2 shall be agreed upon between manufacturer and customer.

Figure 1 — Configuration of glass cylinders for pen-injectors

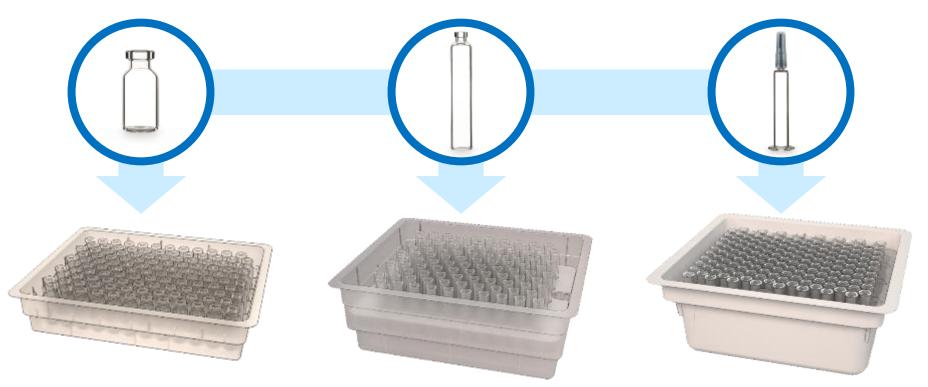
Key Glass Activities

- Glass Quality Task Force
 - TR 43 (2007)
 - TR 43 Revised (2015)
- Glass Quality Surveys
 - 2011 2012
- Glass Handling Task Force
 - TR in progress
- Glass Quality Conferences – 2011-2013

Connecting People, Science & Regulation®


Copyright @ PDA 2016

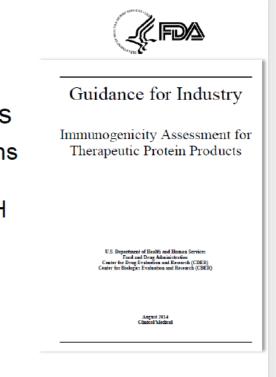
PDA Education © 2017 Parenteral Drug Association


Handling packaging components in primary and secondary production steps needs to address physical material characteristics of glass & polymer

PDA Education © 2017 Parenteral Drug Association

Secondary packaging of glass and polymers containers to be improved for maintaining expected quality and performances

PDA Education © 2017 Parenteral Drug Association

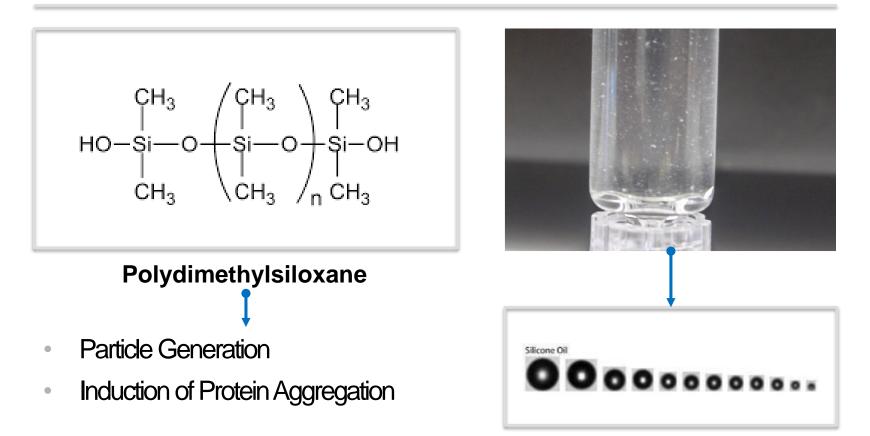


US FDA Guidance 2014⁴)

Immunogenicity assessment

Section 8 – container closure interactions

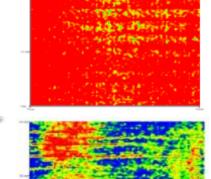
- Glass and air interfaces can denature proteins >> aggregation
- Glass vials known to delaminate at higher pH
- Silicone oil-coated syringe can denaturate proteins >> aggregation
- Leached materials as a source for enhanced immunogenicity (e.g. organic compounds of vulcanization, metals/tungsten)



4) US FDA Guidance for Industry - Immunogenicity Assessment for Therapeutic Protein Products - August 2014

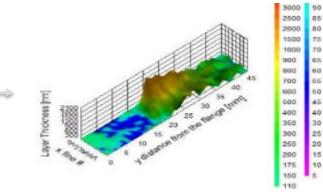
PDA Education © 2017 Parenteral Drug Association

Drug Compatibility with Packaging



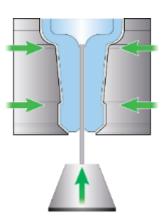
PDA Education © 2017 Parenteral Drug Association

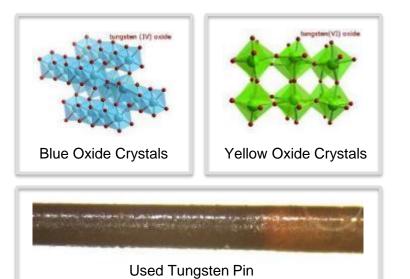
Nice to have instruments became a must for deeper detail on silicone distribution


Good Coverage. Red = 100% coverage

Bad Coverage. Blue = Lack of silicone (Dry spots)

Heat Map with ZebraSci instrument to detect silicone coverage


Connecting People, Science and Regulation®



PDA Education © 2017 Parenteral Drug Association

Rap-Id technique to determine silicone thickness on the barrel

SEM micrograph of internal cone surface: presence of tungten salt residues

- Particle Generation
- Induction of Protein Aggregation

Solutions

- Low tungsten process
- Tungsten free process

PDA Education © 2017 Parenteral Drug Association

•

Connecting People, Science and Regulation®

Connecting People, Science and Regulation

6

Any question?

Connecting People, Science and Regulation

Thank You for Your Attention!