

By your side for a healthier world[™]

Elastomeric Closures for Pre-filled Syringes and Cartridges

Hands-on Training Course, PDA Universe of Prefilled Syringes Friday 10th November 2017 – [90 min] Christa Jansen-Otten

Elastomeric Components for Syringes and Cartridges Formulations, Requirements, Films & Coatings, E&L, Case Study and Designs

Different Manufacturing Technologies for Elastomeric Components for Pharmaceutical Use – Video

Sterilization and Packaging

Cartridge Components

[Multilayer] lined seals

Prefillable Solutions

Syringe Components

Tip caps and needle shields

Syringe accessories

Cartridge

Pen application

Single Dose Manually or Device

Auto-injector application

Prefilled Syringe

Prefilled Syringe System

Single dose Typical Fill Volume: 0.5mL – 10mL

Drug Content Format Liquid

Packaging Components Barrel (glass, COC, COP) Plunger (piston, stopper) Tip cap for luer Needle shield or rigid needle shield for needle syringes Plunger rod Backstop or finger flange extender

Prefilled Cartridge System in Pens

Single or multiple dose Typical Fill Volume: 0.25mL – 3mL

Drug Content Format Liquid, powder / Iyo

Package Components Container (glass or polymer) Plunger Lined seal

Available in bulk or Ready-to-Use (RU) format

Device

Pen system Disposable needles

Customer Impact - Demands on Packaging Components Are Increasing

Particulate reduction/foreign matter Concerns regarding extractables/leachables Ultra-clean components needed New ways to deliver medicine Functional performance of components

- High-speed lines
- Complex devices

New manufacturing approach

- Flexibility
- Time to Market
- Total Cost of Ownership (TCO) focused

Brand differentiation critical

Risks for Container Closures Potential Risks with High Regulatory Focus

- Preservation of drug or biologic
 Chemical incompatibility
 Leachables formation
 - Variability in quality of container closure systems
 Particle levels
 Visual defects
 - Reliability with device delivery Dimensional control Functionality
 - Sterile component availability
 Various fill-finish requirements
 Equivalent quality in bulk, nest and port bags

- Sealing properties and maintain container closure seal integrity over time
- Physically and chemically compatible with different sterilization methods
- Different range of material permeability
- Compatible in long-term contact with drugs
- Wide range of product designs

Elastomer Physical Properties

What we Measure	Why it Matters
Hardness (Durometer)	Can affect physical attributes of the elastomer (coring, breakloose and extrusion, compression and CCI)
Crosslink Density (% Swelling)	Can predict gross compatibility issues
Barrier Properties (O ₂ and Moisture)	Can predict the amount of gas transfer in a given thickness.
Compendia (USP, EP and JP)	Compliance
Identity Tests (Ash, Specific Gravity and IR)	Ash and Specific Gravity tell you that you have the right ingredients in the right ratios. Surface IR can identify surface treatments

Main pharmacopoeia chapters that reflect elastomeric primary packaging of pharmaceuticals

•Ph. Eur. Chapter 3.2.9

- Rubber Closure for Containers for Aqueous Parenteral Preparations, for Powders and Freeze Dried Products

•USP Chapter 381

- Elastomeric Closures for Injections (also Chapter 1; Chapter 87 and 88)

•JP 16th edition Chapter 7.03

- Test for rubber closures for aqueous solutions

Extractable

Compounds removed from individual components of the packaging system under appropriate solvent and temperature conditions

 \rightarrow exaggerated conditions

Leachable

Compounds that migrate from the container/closure (c/c) system of the drug or biologic product under normal conditions of use or during stability studies

 \rightarrow normal conditions

Potential Sources of Extractable from Elastomeric Closures

- Oligomers, Calcium Stearate, Antioxidant (BHT etc.), Epoxidized Soybean Oil, Halide ions
- Filler & Pigments
 - Metallic lons
- Cross-linking system
 - Sulphur, Phenolic resins, Metallic lons i.e. Zn, Peroxides

- <u>Plasticizer</u> (Silicone oil, Wax, Oils)
- Reaction-by products
- Processing aids (Rubber closure, Raw materials)

 \rightarrow Ask your supplier for potential extractable lists

Halobutyls:

Chlorobutyl

Bromobutyl

Butyl

Dry Natural Rubber [DNR]: Not recommended for new applications

If you need an elastomer for special applications such as oily solutions, please refer to your supplier for special formulation offerings.

Elastomeric Formulations for Pharmaceutical

Use

Properties Polyisoprene

- Good permeability rates towards moisture and gases (ETO)
- Cleanliness, drug compatibility
- Low fragmentation / coring
- High elasticity
- Optimal penetrability
- Good resealing properties
- Sterilization: ETO, steam, gamma
- Ozone resistance (low cracking)*
- No blooming, no frosting*
- DNR, MBT, Nitrosamine free*

Properties Butyls/Halobutyls

- Low permeation rates towards moisture and gases
- Cleanliness, drug compatibility
- Low fragmentation / coring
- High elasticity
- Optimal penetrability
- Good resealing properties
- Sterilization: steam, gamma

*only valid for Polyisoprene

Potential Issues: Needle Shields and Tip Caps

Ozone Cracking

Frosting (Bloom)

Tip Caps, Needle Shields & Rigid Needle Shields Synthetic Isoprene Elastomer Formulations

Typical modern rubber formulations

7028/55 Gray Does not crack 7025/65 Gray

Not made with natural rubber!

Film – sheet (e.g. PTFE, ETFE) that is laminated to elastomeric component during the molding process,

- Barrier function e.g. FluroTec[®] film

Coating – liquid or vapor that is sprayed, tumbled or vapor deposited onto the elastomeric component

- Lubricity e.g. B2-coating
- Lubricity and barrier function

Plunger Formulation Technology

Fluorpolymer fims (FluroTec® Film)

- Applied during the compression molding process
- Barrier from leachables and extractables
 - Minimize interaction between elastomer and drug ingredients
- Superior functional performance
 - Provides lubricity without the need for silicone oil
 - Ensures predictable piston release and travel forces
- Reduces adsorption of drug product

HPLC/PDA Overlay – Time 6 Months, 50% Ethanol

Most marketed biopharmaceuticals use fluorpolymer-coated component technology (FluroTec[®] film)

Connecting People, Science and Regulation®

Ch. Jansen-Otten, West I Vienna Nov 2017 | 19

Fluorpolymer Lamination i.e. FluroTec film

- Cross-linkable high molecular weight polydimethylsiloxane coating
- Applied to the surface of rubber stoppers and syringe components
- Low levels of silicone oil extractable
- Reduced particulate count
- Enhanced machinability
- Does not alter chemical and biological stopper/plunger properties

B2-coating vs. Traditional Silicone Oil

Lubricity Coatings B2 Coating \rightarrow Sub visible Particles

- <u>Polydimethylsiloxane</u> (DC 360 Medical Fluid) added during washing operation into the washing drum
 - 350 centistokes \rightarrow USA
 - 1000 centistokes \rightarrow Europe

Advantages	Disadvantages
 Commonly used Applied during wash cycle Low cost 	Particles/droplets may be ound in drug product Silicone level may be nconsistent if process is not

Prefillable Syringe Components

Connecting People, Science and Regulation®

Ch. Jansen-Otten, West | Vienna Nov 2017 | 23

Design Examples of Rigid Needle Shields

RNS 1/2" [13 mm]

Needle length used for subcutaneous drug injection (into the tissue layer between the skin and the muscle)

RNS ⁵/₈" [16 mm]

Needle length used for intramuscular drug injection (deep into the muscles)

Advantages of Rigid Needle Shields vs Soft Needle Shields

Rigid Needle Shields are the preferred closure for staked needle syringes

Example of Prefilled Syringe Plunger Portfolio at West

Plungers suitable for DIN/ISO 11040-4 Syringes

Size	Article	Recommended Rubber Formulation (Halobutyl) in combination with FluroTec® Film
0.5 mL	2342	4023/50 grey B2
1 mL Long	2340	4023/50 grey B2 and 4432/50 grey B2
1 mLLong NovaPure [®] Plunger		4023/50 grey B2
1 mL std.	2345	4023/50 grey B2 and 4432/50 grey B2
1-3 mL NovaPure [®] Plunger		4023/50 grey B2
5 mL	2346	4023/50 grey B2
10 mL	Y-2667	4023/50 grey B2

Majority of designs are customized

Plungers with coating and B2

Size	Article	Available Rubber Formulation (Halobutyl)
0.5 mL	2211 and 2247	4023/50 grey and PH 701/50/C black
1 mL long	2212	4023/50 grey and 4432/50 grey and PH 701/50/C black
1 mL std.	2116	4023/50 grey and 4432/50 grey and PH 701/50 C black

Plungers without coating (with silicone)

Market Drivers

Next Generation Fluorpolymer Coated Plunger

Common 1 mL Long Flurpolymer coated plunger design \rightarrow 2340

New generation 1 mL Long flurpoymer coated plunger design – 1mL NP (1 mL Long NovaPure[®] plunger

Prefillable Cartridge Components

Introduction - Overview

Common drug products in cartridges

- Type I insulin and dental anesthetics Majority of Applications
- Human growth and interferon Specialty
- Historically customers process cartridge components
 - 1.5ml and 3.0ml solid plungers
 - 8mm monolayer lined seals
 - 8mm laminate lined seals
- Evolving patient needs driving combination products
 - Self administration with ease of use
 - Dose accuracy and patient compliance

Cartridge Components 8 mm Lined Seals and Plungers

- Multiple designs on the market in different sizes, colors, rubber formulations
- Often customized

Cartridge Components

- Validated particle levels in specified size ranges
- Optimized silicone oil on plungers for device functionality
- Lined seals for multi-dose (laminate technology)
- Steam sterilized for lower levels of potential extractables
- Market proven elastomer formulations
- Flexibility of package options

Cartridge Component Risks and Insights

Washing and sterilization can be sources of: Elastomer component loose particles Aluminum shell lacquer and metal particles

- Elastomers impact reseal and coring issues Interaction of needle gauge and number of punctures
- Silicone oil impacts functional performance Consistency controls breakloose and extrusion

Cartridge Components 8 mm Lined Seals and Plungers

Technical Aspects Lined Combi Seals for Cartridges

Laminated discs:

- Combination of low coring + good compatibility
 - Product contact side \rightarrow Butyl Rubber
 - Non-Product contact side \rightarrow Synthetic Polyisoprene

Pharmaceutical Rubber Manufacturing

Different 'shapes' need different molding technology:

Compression Molding (CM) Plungers, stoppers, disks....

Precision Injection Molding (PIM) Needle shields ...

Rotocure (Sheeting Material) Lined seals...

Production of Rubber Liners

Precision Injection Molding PDA Production of Needle Shields and Rigid Needle Shields

Parenteral Drug Associati

Production of Plungers Compression Molding

Manufacturing Process

Evolution of Elastomeric Components Final Treatments

Connecting People, Science and Regulation®

Parenteral Drug Associatio

100% Camera Vision Inspection Reduced Rejects for Filled Units

Case Study: End-of-line drug filled units reject trend

Feedback loop for continuous improvement!

Specifications for Sterile Ready-to-Use Plungers - Example

- Bioburden: \leq 5 CFU/100 cm² (pre-sterilization)
- Endotoxin: ≤ 0.10 EU/mL
- Particles: ≤ 2.5 PCI (three size ranges)
- B2 or surface silicone oil level (each lot)

Biosafe® aseptic transfer equipment is for Isolators, RABS and cleanrooms

Typical Sterilization Treatments at Pharmaceutical Rubber Manufacturer

Packaging Materials

High-quality packaging materials

- Reduction of particle load of primary packaging → tighter specification
- Ease of use
- Pin hole resistant physical stress
- Plastic cartons & plastic pallets

Ready-to-Use Packaging Solutions

- Multiple packages for industry requirements
- No plunger preparations is required
- Available with 100% automated verification

1 mL long Plunger - Break Loose and Gliding Force at 0 and 12 Month

Key findings:

Steam treated plungers improve functionality due to lower and more consistent break loose forces

Physical and Chemical Characteristics Steam versus High Gamma

The Ready-to-Use steam sterilized plungers can mitigate risk for chemical and physical deterioration through an optimized steam sterilization cycle that, when compared to high-dose gamma irradiation may:

- Minimize impact on elastomer physical characteristics, and chemical oxidation and degradation during shelf life
- Decrease the number and lower the levels of extractables, with less potential for interaction between the plunger and the drug product
- Improve prefilled syringe functionality due to lower and more consistent break-free forces

Thank you very much for your attention! Questions?

Christa.jansen-otten@westpharma.com

West and the diamond logo, By your side for a healthier world, FluroTec, and NovaPure are trademarks or registered trademarks of West Pharmaceutical Services, Inc., in the United States and other jurisdictions unless otherwise noted. FluroTec and B2 technology is licensed from Daikyo Seiko, Ltd.