

Laser Based Headspace Analysis for CCIT

Josine Wilmer, Study Manager at LIGHTHOUSE

Part 1: Laser based headspace analysis

- Technology overview
- Application to CCI testing of sterile products

Part 2: Theoretical background

- How does gas ingress work?
- How can theory be applied?

Part 3: Case studies and examples

- Process optimization
- Typical use

Characterizing the headspace non-destructively

What gases can be measured?

- Headspace oxygen
- Headspace carbon dioxide
- Headspace moisture (water vapor)
- Headspace total pressure levels

Application to CCI testing-Products packaged under a modified atmosphere

Product Stoppered under a modified atmosphere

Lyophilized product: Partial vacuum with nitrogen or full vacuum

Oxygen sensitive liquids: Purged with nitrogen

Storage Condition Ambient air

Leak Indicating Measurement Increase in oxygen level and/or increase in pressure.

Application

Laboratory instruments or fully automated inspection

Application to CCI testing-Products packaged under a non-modified atmosphere

Product

Stoppered under a non-modified atmosphere. Headspace is air at 1 atm Typical of many liquids

Storage Conditions

Must put container in a chamber to drive a headspace change (similar to Blue Dye testing, but HSA is more sensitive and doesn't involve dye). After a pre-determined conditioning time then remove and test in a headspace analyzer.

Leak Indicating Measurement

Decrease in oxygen level/increase in CO2/ decrease in pressure level.

Application Laboratory instruments

What type of product-packages?

- Clear or amber glass
- Transparent plastics
- Liquid, lyophilized or powder filled
- Vials, syringes, ampoules, cartridges
- Nominal volume ranging from 0.2mL to 250mL

Headspace Analysis Systems

Laboratory and At-line Instruments and accessories

Automated Inspection Machines

Invented for life

Strategic partnership with Bosch for CCI machines with Lighthouse laser measurement technology inside.

Measurement Performance

Instrument and machine qualification using NIST traceable standards.

N=100	Headspace Oxygen (% atm)			m)
Standard Label	Known Value	Meas. Mean	Error	St. Dev.
0.0	0.000	0.01	0.01	0.02
1.0	1.005	0.96	-0.04	0.03
2.0	2.004	1.98	-0.03	0.03
4.0	3.998	4.02	0.02	0.04
8.0	7.999	8.13	0.13	0.03
20.0	20.00	19.93	-0.06	0.04
			Accuracy	Precision

For every delivered system:

 Full validation package: Functional Requirements (FR) Design Specification (DS) Traceability Matrix (TM) Installation Qualification (IQ) Operational Qualification (OQ)

- Users and data managed in a database solution for 21-CFR-11 compliance and full audit trail
- Certificates of NIST traceable calibration standards
- Optional yearly re-certification of standards

Part 2 Gas diffusion theory

In general, there are two different ways by which gas can flow through a defect in and out of a pharmaceutical container:

- Effusion: gas flow that is generated by a total pressure difference across the container defect
- **Diffusion**: gas flow of a particular gas that is generated by a partial pressure difference of that gas across the container defect

Understanding this gas flow enables the development of CCI test methods based on the measurement of gas ingress

CCI testing: Gas diffusion theory

Fick's 1st Law

$$\frac{\partial \mathbf{P}_{i}(t)}{\partial t} = \frac{-D \cdot A_{0}}{V} \frac{\partial \mathbf{P}_{i}(z,t)}{\partial z}$$

New USP <1207> states:

"Mathematical models appropriate to leak flow dynamics may be used to predict the time required for detecting leaks of various sizes or rates."

$$\% Oxygen(t) = 20.9\% \cdot \left[1 - \exp\left(-\frac{\alpha_{Diff}}{V}t\right)\right]$$

The change in oxygen concentration will be exponential with respect to time

Diffusion
Parameter
$$\alpha_{Diff} \left[\frac{cm^3}{s} \right] = \frac{D \cdot A_0}{L}$$

The Diffusion Parameter is a function of the Diffusion Coefficient, *D*, the defect cross-sectional Area, *A*₀, and Depth, *L*.

Validation of Oxygen Ingress Model

With fixed values for: $D = 0.22 \text{ cm}^2/\text{s}$ $A_0 = 20 \mu \text{m}^2 (5 \mu \text{m} \text{ } \text{Ø})$ V = 18 cc (15R)

Obtain an empirical depth parameter value:

 $L = 6 \mu m$

Model matches the data ±0.3 %-atm oxygen at every point

Oxygen Ingress Model Example

Predicted oxygen concentration versus time for ideal defects

av Dec 2017 issue: Mathad Davalanment for

Accepted for publication PDA Journal Nov-Dec 2017 issue: Method Development for CCI Evaluation via Gas Ingress by Using Frequency Modulation Spectroscopy [K. Victor]. Pre-publication published on July 20, 2017.

Connecting People, Science and Regulation®

Parenteral Drug Associatio

Part 3 Case studies and examples

Overview Case studies

- 1. Filling line CCI qualification
- 2. Method development
- 3. Package development syringe CCI and permeation
- 4. Cold Storage CCI Study
- 5. 100% inspection of lyophilized product

- Objective: Generate data demonstrating that the filling process produces good CCI for a specific vial-stopper combination
- CCI Study:
 - Produce empty stoppered & crimped vials with the process. Initial headspace is 1 atm of air (20.9% oxygen).
 - Use headspace gas ingress model to design a sample chamber evacuation, nitrogen backfill, and sample hold cycle.
 - Measure samples for changes in headspace composition. Include positive controls having a 10 μ m micro-capillary through the stopper.

	Headspace Oxygen Level after defined evacuation, backfill, and storage cycle [% atm]		
Sample Vial	1 μm ideal defect	0.6 μm ideal defect	0.5 μm ideal defect
2R	1	4.1	7.1
6R	3.4	12.1	15.0
20R	11.1	18.8	19.5

Example: Gas ingress measurements straightforwardly produced robust CCI data

Detection of 5 micron leak within 30 minutes

Sample set

- 6R DIN clear tubing vial 1.5mL product
- Positive controls: 2µm, 5µm,10µm and 15µm laser drilled defects
 - Glass defects
 - Metal plate defects

Nominal hole size 5 µm

Image provided by Lenox Laser

Study 1: Manufacturing conditions

• Determine purge quality

Study 2: API reactivity

• Oxidation rate

Study 3: CCI method development

- Diffusion tests with vials with known defects
- Effusion test with vials with known defects
- Method protocol

Study 1: Manufacturing conditions

• 50 product, water-filled and empty samples

Study 2: API reactivity

• 50 product samples opened to air and followed over time

Mean measured headspace oxygen level monitored over time

	Oxygen
	(% atm)
Start	19.59
2 hours	19.50
26 hours	19.18
36 hours	17.63
144 hours	15.76

Study 3: CCI method development

Diffusion tests with vials with known defects

Study 3: CCI method development

Effusion tests with vials with known defects

Case Study 3: Package Development Syringe CCI and Permeation

Sample set

- Two syringe types: Staked needle and Luer cone
- Positive controls: 2µm, 5µm,10µm laser drilled glass defects

Case Study 4: CCI testing for vials stored on dry ice (CO₂)

Headspace oxygen

1200 Headspace CO₂ (mbar) 1000 800 600 400 200 0 1 2 3 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 - 4 6 Sample number

Case

- Air headspace vials stored on dry ice (CO₂)
- Storage on dry ice increases risk of container closure integrity loss,
- Conventional rubber stoppers lose elasticity at -80°C risking CO₂ ingress

Result

- 3 containers revealed decreased oxygen levels
- Same vials revealed increased CO₂ levels

Headspace CO₂

Total batch size: 29048 Number rejected: 16 Reject rate: 0.06%

Case Study 5: 100% Inspection of lyo product

Total batch size: 29156 Number rejected: 568 Reject rate: 1.95%

Case Study 5: 100% Inspection of lyo product

Results of 6 chronological batches

Not a robust process

Connecting People, Science and Regulation®

Case Study 5: 100% Inspection of lyo product

Case 100% inspection

4 years of manufacturing data:

- 156 lots
- Total 1.6 million vials

Results

44-lots (28%) with zero rejects3-lots had > 2% reject rateAverage reject rate was 0.27%

It is difficult to manufacture a perfect batch

Advantages and disadvantages

Pro's	Con's	
Non-destructive	Not all fill levels	
• Rapid	Sample needs to be	
Quantitative results	transparent to laser	
Deterministic method	Inline production inspectio	
Operator independent	needs modified headspace	
 Applicable over whole leak range 		
 Permanent & temporary leaks detectable 		

Thank you!