OCC Inspection Systems

CCIT Feasibility Study

Vacuum vs. HVLD^{mc} on 1 & 2.25ml Syringes

Tony Stauffer CCIT s.a. St-Prex, Switzerland

2017-11

Common Package Inspection Methods

- Manual / Vision Inspection (< 80% efficient)
- Destructive Testing
 - Burst Test
 - Water Bath (20-50 microns)
 - Dye Test (20-30 microns)
 - Microbial ingress
- Most are probabilistic
- Always depends on operator

The Good News

- You have now a regulatory guideline (USP 1207) of the best testing practices for a particular package
- You have a range of deterministic tests available to replace probabilistic tests

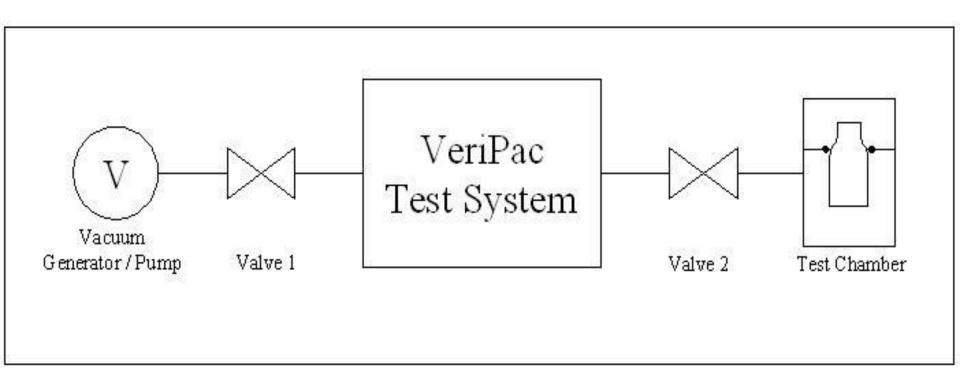
CCIT - USP 1207 guidance document

Documents specifies and differentiates acceptable test methods:

- Deterministic Leak Test Methods
 - Vacuum (ASTM F2338-09)
 - Electrical Conductivity and Capacitance tests (HVLD)
 - Head Space analysis
- Seal Quality test methods
 - Airborne Ultrasound (ASTM F3004-13)
- Probabilistic leak test methods (not considered good practice)
 - Water bath
 - Blue Dye Ingress
 - Microbial ingress test
 - Burst test

Vacuum Micro Leak Testing / CCIT

VeriPac[®]


- Detects vapor or gas release
- Test sensitivity down to 0.01 cc/min. (1 1.5 micron)
- Case studies prove more reliable than dye ingress
- ASTM F2338-09

VeriPac Differential Vacuum Principle (simplified schematics)

ASTM F2338-09

US Patents 6,513,366 and Pend.

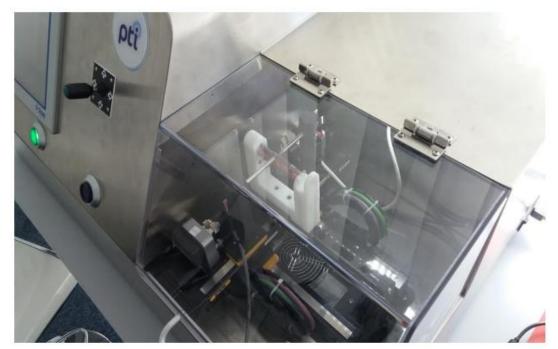
Copyright 2012 Packaging Technologies & Inspection

Modified USP/Ph.Eur. Dye Ingress Test vs Vacuum Decay Leak Test – BMS Test Site

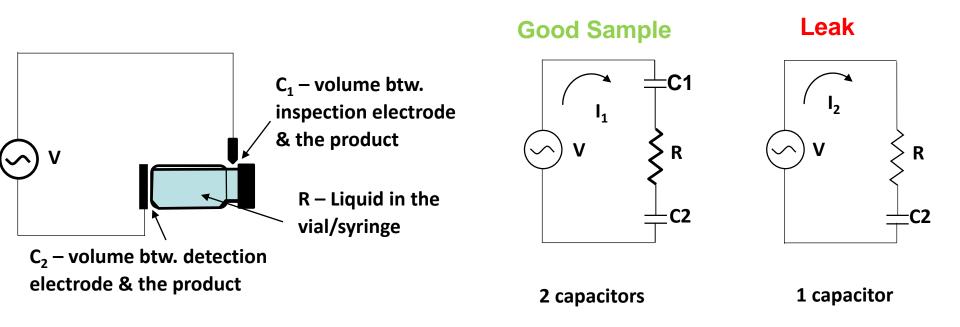
D.f4 T		Leak Tes	st Results	Visual Inspection Results ²				
Defect Type	ID Code ¹	dP Pa	P/F	Inspector 4	Inspector 5	Inspector 6		
	B6	8	Р	Ν	Ν	N		
Controls Tostal	B7	8	Р	Ν	Ν	Ν		
Controls Tested	B 8	8	Р	Ν	Ν	Ν		
for Ingress	B9	8	Р	Ν	Ν	Y		
	B10	8	Р	Ν	Ν	Ν		
	111	64	F	Y	Y	Y		
	112	54	F	Ν	Ν	Y		
5µm hole	113	88	F	Y	Y	Y		
	114	56	F	Ν	Ν	Ν		
	115	46	F	Ν	Ν	Y		
	126	192	F	Y	Y	Y		
	127	184	F	Y	Y	Y		
10µm hole	128	186	F	Y	Y	Y		
	129	301	F	Y	Y	Y		
	130	194	F	Y	Y	Y		
	141	352	F	Y	Y	Y		
	142	356	F	Y	Y	Y		
15µm hole	143	346	F	Y	Y	Y		
	144	445	F	Y	Y	Y		
	145	371	F	Y	Y	Y		

Holed syringes are identical to those used for Part 1, ASTM precision and bias studies.

 2 Y = dye seen, N = No dye seen


Inspection Systems

CCIT Leak Testing with HVLD^{mc} E-Scan[®]

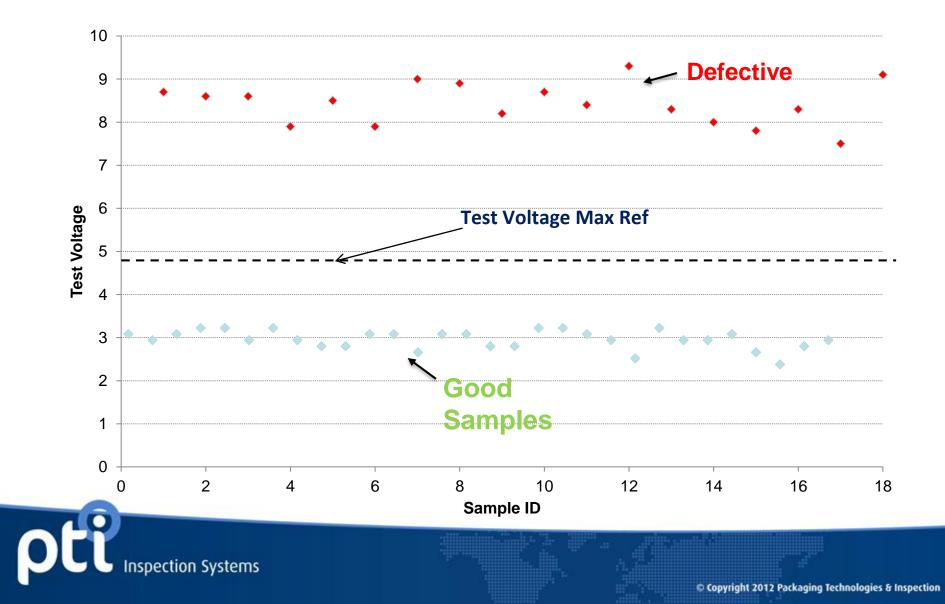

- Off-line laboratory system to inspect liquid filled
 - Vials
 - Syringes
 - Ampules
- DC with offset AC Voltage
- Lower HV application
- mc: micro current
- Improved SNR
- Negligible Ozone
- Product not exposed to HV

pection Systems

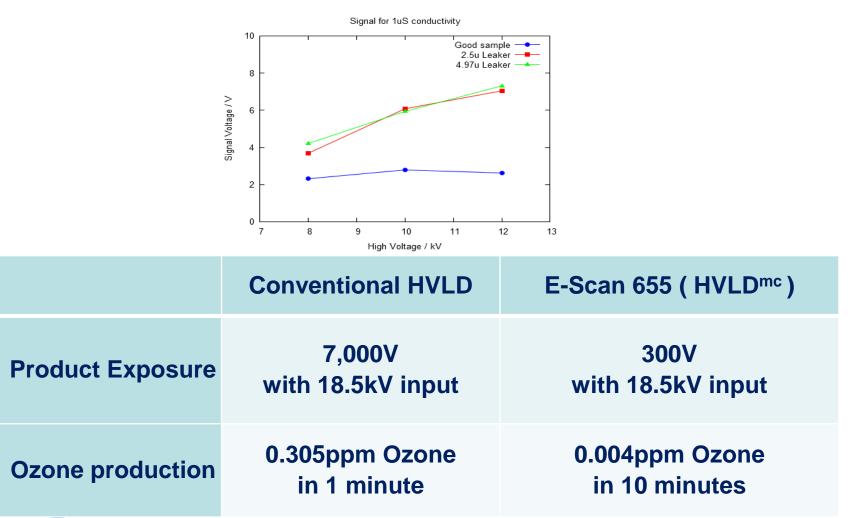
Good for low conductivity liquids incl. distilled water

Functional principle of HVLD^{mc} test

- V High Voltage Source
- **R** Electric Resistance of the product
- **C**₁ Capacitor 1: Glass between the inspection electrode and product
- C₂ Capacitor 2: Glass between the detection electrode and product
- I_1 current produced when product container is sealed
- I_2 current produced when product container is defective


HVLD^{mc} Test – Voltage Signal 1ml Syringe

- Signal Detection 1ml Syringe Signal has amplitude changes
- High Voltage: 14kV
- Red 3.6um hole size
- Black sample without defect
- Filled with distilled water (low conductivity)



Signal

Voltage results for Negative and Positive Controls

High Voltage – Technology Comparison (distilled Water with 1ml Syringe)

Feasibility Study - Samples tested

- 1 ml and 2.25 ml syringes
- Filled with H2O and Albumin (17.5%)

Inspection Systems

Sample Identification

	Number of Samples tested						
	1 n	nl	2.25 ml				
	Water	Albumin	Water	Albumin			
Negative Controls	15	24	15	24			
unidentified							

Positive Controls				
5 µm	3	5	3	5
Idendified as	44, 45, 46	19, 20, 21, 22, 23	M2, N2, O2	G2, H2, I2, J2, k2
10 µm	3	5	3	5
Identified as	41, 42, 43	31, 32, 33, 34, 35	M3, N3, O3	G3, H3, I3, J3, K3
20 µm	3	5	3	5
Identified as	38, 39, 40	7, 8, 9, 10, 11	M, N, O	G, H, I, J, K

Summary of results (negative controls)

Negative controls		# samples	(vacuur	VP-455 n decay) legative	E-Scan 655 (HVLD) found negative		
1 ml	Water	15	15	100 %	15	100 %	
1 ml	Albumin	24	24	100 %	24	100 %	
2.25 ml Water		15	15	100 %	15	100 %	
2.25 mi	Albumin	24	24	100 %	24	100 %	

- All negative samples are identified as such with both VeriPac[®] and E-Scan[®] instruments
- No false positives

Summary of results (positive controls)

Positive Controls			VeriPac VP-455 (vacuum decay)		E-Scan 655 (HVLD)			
			# samples	Found p	oositive	Found positive		
	1 ml	Water	3	0	0 %	3	100%	
5.000	TUU	Albumin	5	0	0 %	5	100%	
5 µm	2.25 ml	Water	3	0	0 %	3	100 %	
	2.25 mi	Albumin	5	0	0 %	4	80 %	
	1 ml	Water	3	3	100 %	3	100%	
10	1 1111	Albumin	5	0	0 %	5	100%	
10 µm	2.25 ml	Water	3	0	0 %	3	100 %	
	2.25 mi	Albumin	5	0	0 %	5	100 %	
	1 1		3	3	100 %	3	100%	
20 μm	Albumin	5	0	0 %	5	100%		
	Water	3	3	100 %	3	100 %		
	2.25 ml	Albumin	5	0	0 %	5	100 %	

• No albumin prefilled positive sample could be detected with Vacuum Decay

• E-Scan[®] allows to identify all positive samples except one

Tests with VeriPac[®] (negative controls)

	Negative									
		1 ml s	yringe		2.25 ml syringe					
	Wa	ter	A	b.	Wa	ter	Alb.			
Test #	Abs (mb)	Diff (Pa)	Abs (mb)	Diff (Pa)	Abs (mb)	Diff (Pa)	Abs (mb)	Diff (mb)		
1	4.5	15	4.1	10	4.8	15	3.7	13		
2	4.5	13	4.0	11	4.0	16	3.8	11		
3	4.5	12	4.1	11	3.8	15	3.8	12		
\downarrow	\downarrow	\downarrow	↓	\downarrow	↓	\downarrow	4	\downarrow		
13	4.0	12	4.0	12	3.7	12	3.8	9		
14	4.0	12	4.0	10	3.8	12	3.8	10		
15	4.0	10	4.1	12	3.8	12	3.8	9		
16			4.1	12			3.8	10		
\downarrow			\downarrow	\downarrow			\downarrow	\downarrow		
23			4.1	10			3.8	10		
24			4.0	12			3.7	10		
Average	4.2	12.2	4.0	11.4	4.0	13.9	3.8	10.7		
STD	0.2	1.4	0.1	1.2	0.3	1.5	0.0	1.1		
Noise (3 x STD)	0.6	4.3	0.2	3.5	0.9	4.6	0.1	3.4		
Ref. 3STD	4.8	16.5	4.2	14.9	4.9	18.5	3.9	14.1		
Ref. 6STD	5.5	20.7	4.3	18.4	5.9	23.1	4.1	17.4		

Tests with VeriPac[®] (positive controls)

		Positive					Positive				
				yringe				2.25 ml syringe			
			ter	Al					ter	A	
Sample id.				Abs (mb)	Diff (Pa)	Sample id.		Abs (mb)		Abs (mb)	Diff (Pa)
44	5	4.0	9			M2	5	4.1	22.0		
41	10	7.2	139			M3	10	3.8	7.0		
38	20	22.9	564			M	20	6.2	109.0		
39	20	23.9	543			N2	5	3.8	7.0		
40	20	20.2	527			02	5	3.7	9.0		
42	10	12.2	285			N3	10	3.8	15.0		
43	10	6.8	109			O3	10	3.8	9.0		
45	5	4.5	20			N	20	7.2	133.0		
46	5	4.5	20			0	20	6.5	120.0		
23	5			4.1	18	G2	5			3.7	7.0
35	10			4.0	17	G3	10			4.1	10.0
7	20			4.0	15	G	20			3.8	8.0
8	20			4.1	18	H2	5			3.8	10.0
9	20			4.1	16	12	5			3.7	9.0
10	20			4.1	16	J2	5			3.7	9.0
11	20			4.0	14	K2	5			3.8	9.0
31	10			4.0	16	H3	10			3.8	9.0
32	10			4.0	15	13	10			3.8	8.0
33	10			4.0	17	J3	10			3.8	9.0
34	10			4.0	14	K3	10			3.8	10.0
19	5			4.0	15	н	20			3.8	8.0
20	5			4.0	14	1	20			3.8	9.0
21	5			4.1	15	J	20			3.8	10.0
22	5			4.0	14	К	20			3.8	8.0

0

ρ

Tests with E-Scan[®] (negative controls)

		Neg	ative	
	1 ml s	yringe	2.25 ml	syringe
	Water	Alb.	Water	Alb.
Test #	Volt	Volt	Volt	Volt
1	3.73	3.93	3.11	3.26
2	3.11	3.80	3.02	3.66
3	3.59	3.23	3.22	3.51
\checkmark	\checkmark	\downarrow	\downarrow	\downarrow
13	3.44	3.58	3.47	3.22
14	3.28	3.18	3.12	3.30
15	2.86	4.64	3.33	3.16
16		3.32		3.26
\downarrow		\downarrow		\downarrow
23		3.44		3.20
24		4.04		3.51
Average	3.38	3.59	3.23	3.29
STD	0.28	0.38	0.19	0.19
Noise (3 x STD)	0.85	1.14	0.56	0.56
Ref. 3STD	4.23	4.74	3.79	3.85
Ref. 4 STD	4.52	5.12	3.97	4.04
Ref. 6STD	5.09	5.88	4.34	4.41

ptt Inspection Systems

Tests with E-Scan® (positive controls)

Positive 2.25 ml syringe

Alb.

Volt

5.38

6.08

9.71 7.09

4.70

5.45 3.38

7.06

4.87

5.83

6.35

7.77

9.03

8.74

8.60

Water

Volt

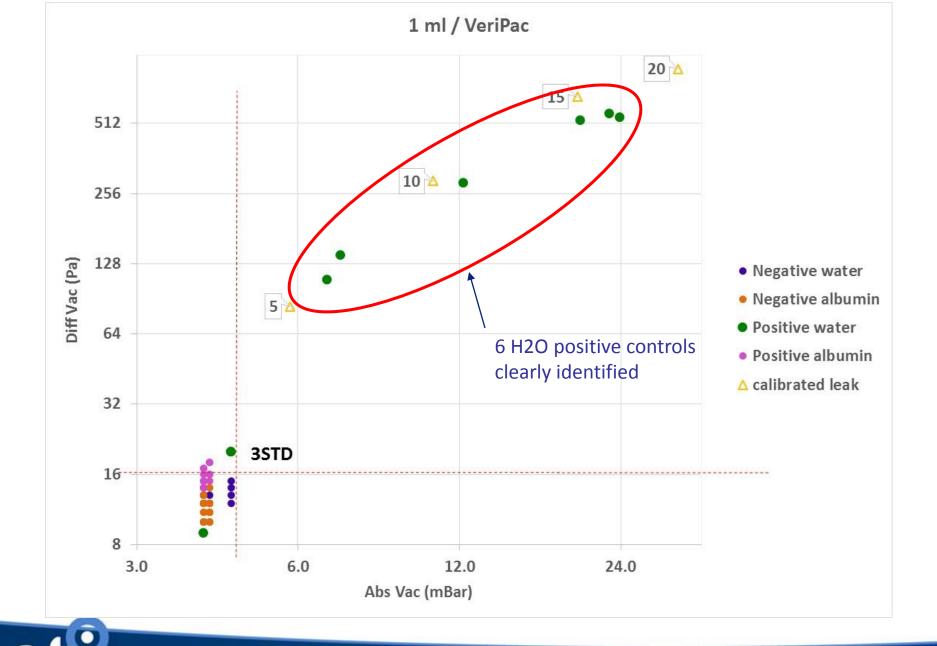
8.19 9.46

10.00

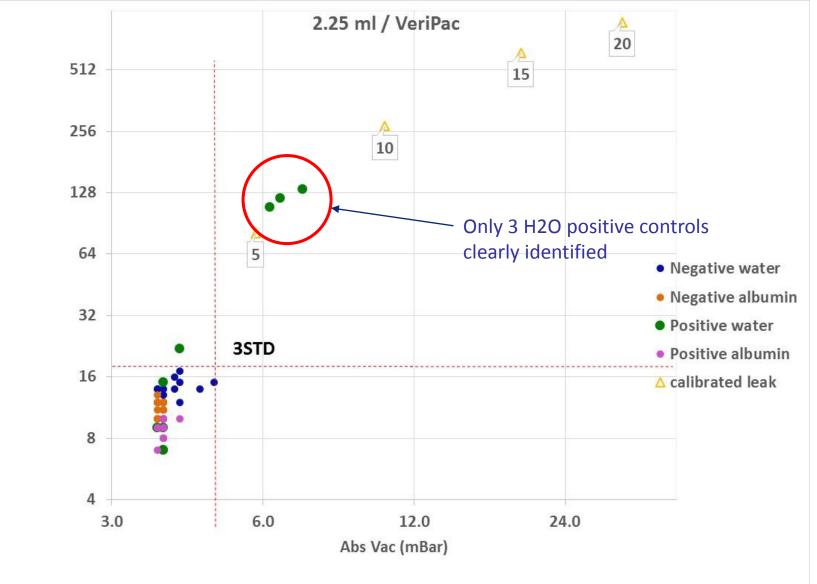
9.22

10.00

9.22 7.95

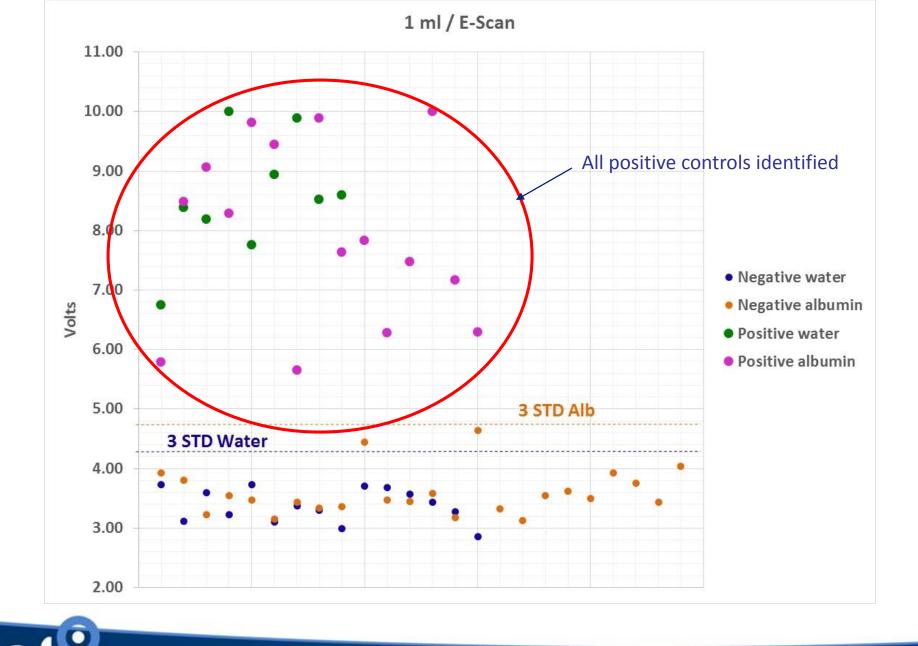

10.00

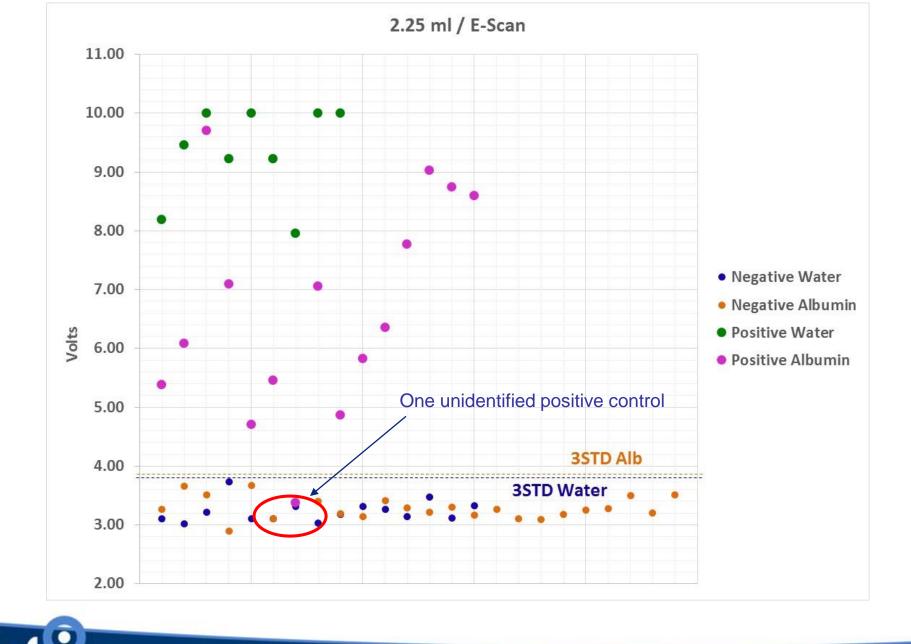
10.00


		Positive		I	
		1 ml s	yringe		
		Water	Alb.		
	Nominal				
Sample id.	leak	Volt	Volt		Sample id.
44	5	6.75			M2
41	10	8.38			M3
38	20	8.19			М
39	20	10.00			N2
40	20	7.76			O2
42	10	8.94			N3
43	10	9.89			O3
45	5	8.52			N
46	5	8.60			0
23	5		5.79		G2
35	10		8.48		G3
7	20		9.06		G
8	20		8.29		H2
9	20		9.82		12
10	20		9.45	ĺ	J2
11	20		5.65	ĺ	К2
31	10		9.89		НЗ
32	10		7.64		13
33	10		7.83		J3
34	10		6.28		КЗ
19	5		7.47	ĺ	н
20	5		10.00	ĺ	
21	5 5		7.17	ĺ	J
22	5		6.29		K

19

ρ





Diff Vac (Pa)

OTT Inspection Systems

Inspection Systems

Inspection Systems

Conclusion

- The Vacuum Decay method fails to detect leaks on Albumin filled syringes, or has a reduced probability of detection on Water, because small leaks easily get plugged
- PTI's HVLD^{mc} technology will be able to perform the CCIT test satisfactorily, and detect the positive prefilled samples, regardless of liquid content
- Only one 2.25 ml positive sample was not identified as such. Deeper evaluation of the size of the leak should be done in order to find an explanation.
- HVLD^{mc} (E-Scan 655) technology is the recommended CCIT inspection method as per USP 1207 for liquid prefilled syringes, ampules and vials.

The ideal Test Method

Non-Destructive, Non-Invasive, No Sample preparation USP/ASTM test method > ISO/FDA recognized Repeatable as well as Reproducible Deterministic - Quantitative (Informative) Accurate and Reliable Simple and Robust Cost Effective Zero Waste

CCIT Laboratory – Pti-Europe

Address:

CCIT s.a. Chemin du Glapin 4 1162 St-Prex Switzerland

Global Quality Solutions

Thank You!

Tony Stauffer/Tatiana Ponce-Simental contact@ccit.com USA: +1 914 337 2005 Switzerland: +41 21 805 0020 www.ptiusa.com www.ccit.com

