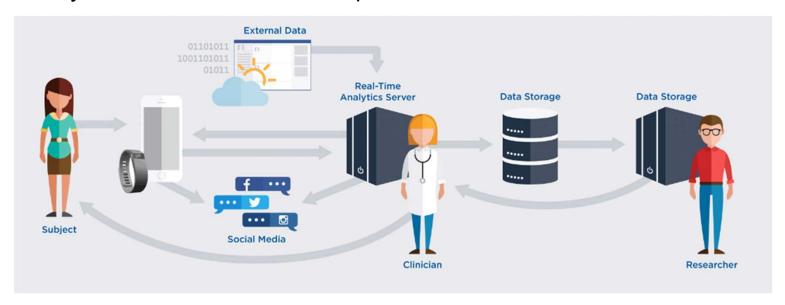


The Move to Connected Devices

Key elements to consider in product design

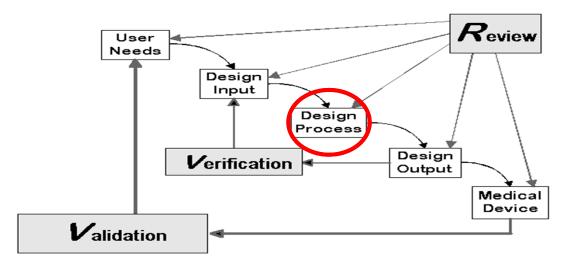
Battelle's mission: To translate scientific discovery and technology advances into societal benefits


- Nonprofit, charitable trust formed in 1925
- Profits reinvested in science & technology and in charitable causes, making the world better for generations to come
- Knowledge, talents and resources applied to help our customers achieve their most important goals

Getting Started

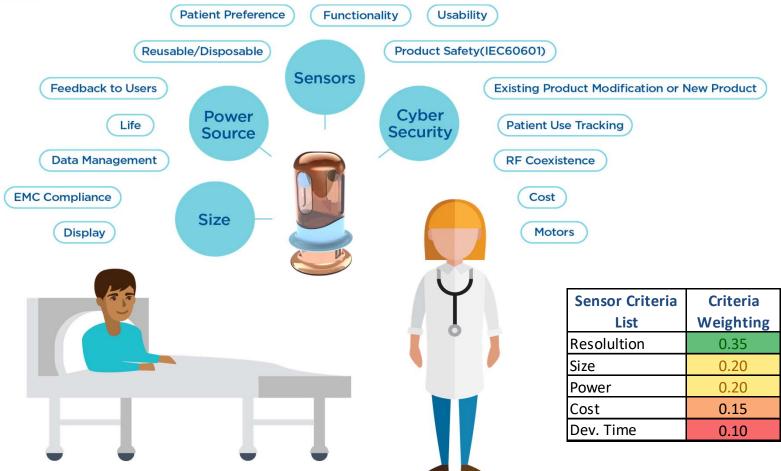
So you have made the decision for a connected drug delivery device...

- Identified need for connected
- Defined user and use cases
- Mapped complete picture for what to do with data
- Ready to initiate Product Development Process



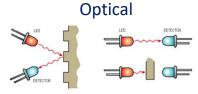
What elements should be considered in the device design?

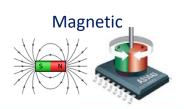
Product Development Process


- Translate user needs, user feedback, marketing input, and performance needs into testable product requirements
- Execute design activities continuing to update product risk assessment
- Generate drawings and documents to support design
- Confirm design performs to requirements
- Confirm device design meets the needs of the user
- Review progress during each stage for team alignment before advancing

It can be done

Considerations for a Connected Drug Delivery Device Design



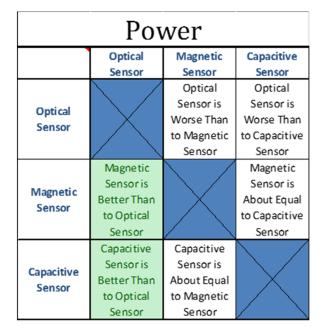

- Define parameters for consideration
- Involve key stakeholders and prioritize based on needs

Sensors

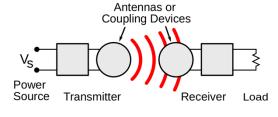
- What is being sensed?
 - Dose delivered, temperature, device contact with patient, etc...
 - What are the moving parts?
- Is design add-on to existing device or new device?
 - Existing device: Establish constraints, identify components that can be leveraged
 - New device: Drive design to what is truly needed and adds value
- What are the key factors in identifying the correct sensor implementation?
 - Identify available sensor options
 - Identify key performance parameters: Resolution, Power, Timing, etc...
 - Identify external factors that could impact functionality

Cybersecurity

- What is the impact of Confidentiality?
 - Is there information in the system that must remain secret?
 - Protected Health Information, Intellectual Property
- What is the impact of Integrity?
 - Is there information or functionality in the system that must remain untampered?
 - Diagnostic algorithms, treatment configuration, serial number, expiration date
- What is the impact of Availability?
 - What pieces of the system must always remain available?
 - Therapy functionality? Bluetooth connection?

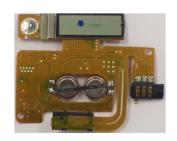


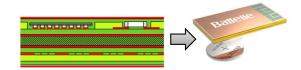
It can be done


Power

- Power source selection considerations
 - Power budget:
 - # sensors, type of sensor, monitoring of sensor, data transmission timing, data range, device power activation
 - Product life requirements
 - Form factor limitations
 - Integration of power source External module or internal
- What power technology will be used?
 - Battery rechargeable, replaceable, disposable
 - Energy Harvesting real-time or energy storage capacitor required

Conformal Patton
Conformal Battery





Size

- Additional functionality over a traditional mechanical injection device may make the device larger, but how much?
- Understanding and Evaluating Usability
 - Things to evaluate that can drive the design:
 - Size, weight, forces, quality of contact with patient for injection, buttons, thumb reach, displays and controls, demographics
 - Methods: Models, formatives studies, contextual research
 - Understand storage and general handling of device beyond the injection
- Size Impacts
 - Sensor Implementation, Displays and Controls, Power Source, PCB

Embedded Components in PCB

Making the Key Design Decisions

Calculate weighted priority with direct comparison of criteria

Compile results and evaluate via summary table

Criteria List	Criteria Weighting		
Resolultion	0.35		
Size	0.20		
Power	0.20		
Cost	0.15		
Dev. Time	0.10		

Power						
	Optical	Magnetic	Capacitive			
	Sensor	Sensor	Sensor			
		Optical	Optical			
Outical		Sensor is	Sensor is			
Optical Sensor	\times	Worse Than	Worse Than			
Sensor		to Magnetic	to Capacitive			
		Sensor	Sensor			
	Magnetic		Magnetic			
Magnetic Sensor	Sensoris		Sensor is			
	Better Than	\times	About Equal			
	to Optical		to Capacitive			
	Sensor		Sensor			
	Capacitive	Capacitive				
Capacitive Sensor	Sensoris	Sensor is				
	Better Than	About Equal	X			
	to Optical	to Magnetic				
	Sensor	Sensor				

Criteria Options	Resolultion	Size	Power	Cost	Dev. Time	Relative Value
Optical Sensor	0.256	0.006	0.006	0.050	0.073	0.39
Magnetic Sensor	0.089	0.097	0.097	0.004	0.025	0.31
Capacitive Sensor	0.005	0.097	0.097	0.096	0.001	0.30

Summary

- Final design must meet the expectations of the users for both ease of use and performance to be successful
- It is important to understand the tradeoffs to achieve user and performance needs
- Key technical design criteria with a higher level of criticality for a connected drug delivery device include:
 - Sensor Selection
 - Cybersecurity
 - Power
 - Size
- Evaluate key design options using a structured process such as trade-off matrix
- Throughout development, review safety, performance and program risks to ensure the design continues to meet the needs

BATTELLE It can be done