

Particles in Packaging Components: Numbers and Chemical Compositionts

PDA Europe Preconference Workshop November 6 2017

Markus Lankers Rap.ID Particle Systems GmbH

Overview

- Motivation
- Technology
- Top Ten visible / sub-visible
- Packaging / syringes
- Time dependent particle phenomena
- Particles applied to the patient
- Summary

What are the most common types of particles found during visual inspection?

	2014	2008	2003	1996
Lint/Fiber	1	1	1	1
Glass	2	2	2	2
Product Related	3	3	4	3
Rubber/Elastomer	4	4	5	5
Metal	5	5	3	4

Motivation

- Particles are treated differently in regulation depending on size (USP 788, 790)
- Separate treatment of particles might hide the link between visible and sub-visible particles
- What are main components of visible and sub-visible contamination
- Are visible particles found in parenteral drugs similar to sub-visible particles in terms of material?
- Do they have the same source ?

Technology

ID of visible particles is a standard procedure accessible in many laboratories by microscopy, SEM/EDX, IR spectroscopy, Raman spectroscopy

ID of sub-visible particles: same technologies usable but consider differences:

- More particles!
- Size is small: weaker signal, IR of limited use
 Use of highly automated high throughput systems commercially available for SEM/EDX and Raman microscopy. Throughput ~ 100-1000 particles / hour

Routine ID of sub-visible particles since 2004 Database of \sim 2.150000 identified particles > 10 μ m

Filter → Scan Fields

•Membrane (0.8 μm, 3 μm) RAMAN inactive

Result

Substance	Number Size Distribution [μm]			
		>10	>25	>100
Graphite	45	1	44	0
Titaniumoxide Anatase	12	12	0	0
Fluorescence	32	23	9	0
Unidentified substance	5	5	0	0
Protein	99	81	16	2
Silicone / Protein mix	127	92	32	3
Silicone Oil	129	95	34	0
Analyzed Particles	449	309	135	5

- Results are displayed as a table.
- 300 particles >10 are usually identified
- Channel > 10 and > 25 μm are treated as sub-visible channel

Top Ten

- Data was extracted out of ~11000 measurements
- Top ten data was filtered for special contamination like precipitation, protein agglomeration, delamination
- 200-500 particles per analysis are identified in the range of > 10 μm 2000 μm

Visible Particles

Cellulose, Polyester and Protein/Polyamide particles are major contributions to particulate contamination.

Sub-visible

Silicone oil, Protein, Cellulose particles are the most often found contaminants

Comparison

Drug product filled in Syringes

Visible Particles

Protein; 6 Polyamide; 7 PTFE; 7 Cellulose; 39 Silicone Oil; 3

Sub-visible Particles

Top Ten in more detail

•Cellulose: mostly fibres

-source: clothes, **towels**, wipers, autoclave paper

Longchain hydrocarbon

-source: rubber (stopper), PE (bottles)

Top Ten in more detail

Polyester: fibres and particles

Source: Cleanroom clothes and defect filter

Protein: mostly flakes

Source human dust, protein particles from protein solution were not counted

•Silicone oil: compact particles

Source: sealings, siliconisation

Control Your Packaging Material

DIN ISO 8871

DEUTSCHE NORM

September 2004

DIN EN ISO 8871-3

DIN

ICS 11.040.20

Ersatz für

DIN ISO 8871/A1:1996-06

Elastomere Teile für Parenteralia und für Geräte zur pharmazeutischen Verwendung –

Teil 3: Bestimmung von herausgelösten Partikeln (ISO 8871-3:2003); Deutsche Fassung EN ISO 8871-3:2004, Text Deutsch und Englisch

Elastomeric parts for parenterals and for devices for pharmaceutical use – Part 3: Determination of released-particle count (ISO 8871-3:2003); German version EN ISO 8871-3:2004, text german and english

ISO 8871-3

ISO 8871-3

- 2 methods for visible and subvisible particles similar to 788
- Sample size proportional to surface visible particles ~100 cm2 Strong scatter in results => larger sample size
- No qualification requiredbut would be beneficial

ISO 16232 Extraction is efficient when achieve 10% of starting value

K Wormuth Part in Inject 2017

Stopper

Visible particles found in stoppers, extracted by rinsing and filtration

Sub-visible particles found in stoppers, extracted by rinsing and filtration

Bags might reflect stopper quality in terms of particles

Test Procedure: Bag rinsed with 250 ml water / SDS,

Time dependent phenomena /Protein aggregation

Substance	Number	Size Distribution umber [µm]			
		>2	>10	>25	>100
Graphite	46	1	1	44	0
Titaniumoxide Anatase	126	114	12	0	0
Fluorescence	107	75	23	9	0
Unidentified substance	120	115	5	0	0
Protein	622	523	81	16	2
Silicone / Protein mix	743	616	92	32	3
Silicone Oil	870	741	95	34	0
Analyzed Particles	2634	2185	309	135	5

Inherent particles or particles which develop over time might be detected early by monitoring sub-visible particles

Coating

Increasing number of rejects in visual inspection with time

	Size and Substance Distribution of Measured Particles					
Substance	Number	Size Distribut	ion [μrn]			
-	-	>=10	>=25	>=50	>=100	
Proteine	6	0	0	1	5	
Fluorescence	18	0	0	1	17	
Coating	1885	1223	444	132	86	
All particles	1909	1223	444	134	108	

Inherent particles or particles which develop over time might be detected early by monitoring subvisible particles

PTFE Coating Particles

Early detection of coating / stopper incompatibility by detection of PTFE particles

Infusion Tubing

Ampoules

Size and Substand Particles					
Substance	Number Size Distribution μm]				
	-	5 to <10	Subvisble	Visible	
Glass	1766	1163	621		12
Polyester	106	0	105		1
All particles	1872	1163	726		13

- Majority of particles in ampoule samples after breaking the ampoule is glass.
- Other particles are hard to classify.

DIN ISO 8536

July 2013

DIN EN ISO 8536-4

ICS 11.040.20

Supersedes DIN EN ISO 8536-4:2011-01

Infusion equipment for medical use -

Part 4: Infusion sets for single use, gravity feed (ISO 8536-4:2010 + Amd 1:2013);

English version EN ISO 8536-4:2013 + A1:2013, English translation of DIN EN ISO 8536-4:2013-07

Infusion Set Tubing

Substance	Number	Size Distribution [µm]		
		10 to <25	25 to <50	>=100
All particles	207	196	11	0
Unidentified	48	44	4	0
Calcium Carbonate	9	9	0	0
Fluorescence /	58	55	3	0
Protein				
Polystyrene	2	2	0	0
Longchain	39	36	3	0
hydrocarbon				
Cellulose	3	0	3	0
All analyzed particles	159	146	13	0

Syringe silicone free

Substance	Number	Size		
		10 to <25	25 to <50	>=100
All particles	1760	1635	113	12
Erucamide	154	60	86	8
Fluorescence	30	10	18	2
Polyethylene	7	3	4	0
Cellulose	3	1	1	1
Long Chain	3	1	2	0
Hydrocarbon				
Polypropylene	1	0	0	1
Background	2	0	2	0
All analyzed particles	200	75	113	12

Might be slipping agent

Particles in infusions

Catecholamine infusion

88% reduction of particles $>2 \mu m$

Bolus injection

Dramatic increase of particles. Particle numbers of the total 3 day infusion compared with one bolus injection

Syringe

Loss of silicone due to plunger movement: 0,1 to 0,9 mg (silicone determined by reflectometry)

Amount is sufficient for the release of 100000-900000 silicone droplet (10 μm size)

Process for stabilization eg. adsorption into water/oil interface is necassary

Summary

- Differences of the composition between sub-visible and visible particles found in drugs are observable: main components are similar but quantity changes
- 60-70 % of particulate contamination can be attributed to a small number of compounds
- Many contaminations can be related primary packaging. The statistical fingerprint might help to find the source.
- Time dependent particle problems like, protein aggregation and decoating of stoppers, delamination might an be detected early with the help of sub-visible particles
- Different kinds of use of a drug should be considered for the particle load applied to the patient

