

Monica De BardiPostdoc, University of Basel F. Hoffmann – La Roche monica.de_bardi@roche.com

Needle clogging of stacked-in-needle PFS with high concentration protein therapeutics

Pre-Conference Workshop: Impact of Pre-filled Syringe Packaging Components on Biopharmaceutical

Vienna/Austria, 6 November 2017

Presentation Overview:

- \bullet Introduction to the topic
- \blacksquare What is needle clogging?
- \bullet Study design
- \blacksquare Mechanism of liquid entering in the needle
- \blacksquare Solidification process
- \bullet Summary and conclusions

What is needle clogging?

DPs on needle eye, liquid (left) and solidified (right)

•Jelly-like/solid clog at needle tip *Observation of peak forces during injection force testing*

- Difficult injection
- Auto-injector failure

or even complete blockage of the liquid path

- ‐Understanding of the phenomenon
- Minimize the occurrence
- Increase patient compliance

Some clarifications on needle shield:

•**Gas permeable** \rightarrow To facilitate the sterilization (steam, EtO)

Explanation of the mechanism: theory

 \rightarrow After filling, needles are empty What is happening then?

How can we look inside the needle?

Challenges:

- Presence of the needle (metal wall \rightarrow X-Ray CT not suitable)
- Presence of the RNS

Neutron imaging (N.I.)

 \triangleright Higher transmittance of metals

 \triangleright High contrast for hydrogenous material (DPs solvent)

Neutron Imaging: acquisition scheme

Facility at Paul Scherrer Institute (PSI, Switzerland)

Neutron Imaging results:

Paul Scherrer Institute (PSI)

N. I. study: Identify the potential critical factors:

- After filling, needles are empty -

DoE study

Factors tested:

- -Max ambient T°
- Time at ambient T°
- Nr of cycles 2-8°C/ ambient T°
- -Shaking
- Etc.

More in detail:

 $1,6$ 50 liquid/air interface shift liquid/air interface shift $1,4$ Temperature [°C] 40 1,2 **TOU_{OO}OUO** Temperature $\overline{}$ 30 [mm] 0,8 \bullet -,-
0,6 20 $0,4$ 10 0,2 0 00 0 5 10 15 0 5 10 15 Time [h] Time [h]

Results:

Exposure to high temperature (30-40°C) for long time (48h) cause liquid in the needle

RNS elastomer might be water vapor permeable

Observation: prevention of water vapor transmission through RNS reduced needle clog rate:

How much water vapor can pass through the RNS?

No clear values from suppliers

- **Gravimetric method**→ weight loss study
- **Measure the WVTR [→]**(water vapor transmission rate) through rubber sheet with same formulation as the RNS

Gravimetric method: results

Different rubber formulations showed different weight loss

The slope of the line is the WVTR

Measurements of the water vapor transmission rate (WVTR)

On rubber sheets with the same rubber formulation as the RNS

 $WVTR = K (p1 - p2) / l$

K = coefficient of permeation **p = water vapor partial pressure** $(\Delta PP = p1 - p2)$ l = layer thickness

Set up of the measurements:

Advantages:

- low temperature
- faster method (systematic inv.)

 3.00

Rubber 1 sheet

 $y = 0.0431x - 0.0462$ $R^2 = 0.9945$

Results:

Difference of Partial Pressure (ΔPP) is the driving force for vapor diffusion 1)

Interpolation: We can calculate the WVTR at each T° knowing the ΔPP (T° and RH) 2)

WVTR vs ΔPP: linear relation

Combining the two methods we can calculate the water loss at each storage conditions

Ex: Needle Volume (27 G RW) ~ 700 µg

Theoretical time necessary to "empty" a needle (RNS 1): 2 months at 25 °C, dry conditions

Clogging rate after 3 M at same conditions:43% clogged

There must be a water-replacement mechanism preventing 100% full clogging

 \rightarrow Water replacement from the syringe barrel?

Increase of DPS concentration and viscosity:

Drying of a high concenztration mAb drop (left drying at room conditions: 23 °C, 40% rH

Weight change of a high concentration mAb drop (left drying at room conditions: 23 °C, 40% rH)

Tomography: cracks in the solidified material inside the needle

Increase of DPS concentration and viscosity:

mAb+blue dye in a needle glass, left open at room T°

- ‐Segments shrink while drying
- ‐ While the segment closer to the needle tip is clogged, the remaining segments are still liquid (moving)
	- Segments closer to the needle tip dry earlier and faster
	- A solidified segment is sufficient to cause clogging
	- Formation of a porous clog (water vapor can pass through) \rightarrow water evaporation continues
	- Pressure resistant clog (no gas exchange at short time range)

Summary and conclusion:

✓ Mechanism of liquid entering the needle is clarified: ΔP causes liquid in the needle (ΔT, mech.P, atm P fluctuations)

- \checkmark The WVTR via different types of RNS was characterized \checkmark The mechanism of WVT is clarified: linear dependency on the ΔPP
- \blacktriangleright importance of the correct storage conditions ⁺ shipping
- \triangleright solvent evaporation is an important driving factor in the clogging phenomenon
- Water loss can be predicted at certain storage conditions (based on the ΔPP)
- \triangleright solvent evaporation can be tuned by choosing the appropriate RNS rubber formulation and/or storage conditions

Acknowledgements

RCTC needle clogging team

Pharm. Dev. & Supplies: Kewei **Yang**, Robert **Müller** Device Development: Mathieu **Rigollet**, Frank **Bamberg**

University of Basel: Prof. Thomas A. **Jung**

Paul Scherrer Institute (PSI): Christian **Grünzweig**, Pierre **Boillat,** David **Mannes**