

Monica De Bardi Postdoc, University of Basel F. Hoffmann – La Roche monica.de_bardi@roche.com

Needle clogging of stacked-in-needle PFS with high concentration protein therapeutics

Pre-Conference Workshop: Impact of Pre-filled Syringe Packaging Components on Biopharmaceutical

Vienna/Austria, 6 November 2017

Presentation Overview:

- Introduction to the topic
- What is needle clogging?
- Study design
- Mechanism of liquid entering in the needle
- Solidification process
- Summary and conclusions

What is needle clogging?

DPs on needle eye, liquid (left) and solidified (right)

• Jelly-like/solid clog at needle tip

- Difficult injection
- Auto-injector failure

Observation of peak forces during injection force testing or even complete blockage of the liquid path

- Understanding of the phenomenon
- Minimize the occurrence
- Increase patient compliance

Some clarifications on needle shield:

• **Gas permeable** → To facilitate the sterilization (steam, EtO)

Explanation of the mechanism: theory

 \rightarrow After filling, needles are <u>empty</u>

How can we look inside the needle?

Challenges:

- Presence of the needle (metal wall \rightarrow X-Ray CT not suitable)
- Presence of the RNS

Neutron imaging (N.I.)

Higher transmittance of metals

High contrast for hydrogenous material (DPs solvent)

Neutron Imaging: acquisition scheme

Facility at Paul Scherrer Institute (PSI, Switzerland)

Neutron Imaging results:

Paul Scherrer Institute (PSI)

N. I. study: Identify the potential critical factors:

- After filling, needles are empty -

Results:

DoE study

Factors tested:

- Max ambient T°
- Time at ambient T°
- Nr of cycles 2-8°C/ ambient T°
- Shaking
- Etc.

More in detail:

Exposure to high temperature (30-40°C) for long time (48h) cause liquid in the needle

RNS elastomer might be water vapor permeable

Observation: prevention of water vapor transmission through RNS reduced needle clog rate:

How much water vapor can pass through the RNS?

No clear values from suppliers

- Gravimetric method→ weight loss study
- Measure the WVTR \rightarrow (water vapor transmission rate) through rubber sheet with same formulation as the RNS

Gravimetric method: results

Different rubber formulations showed different weight loss

The slope of the line is the WVTR

Measurements of the water vapor transmission rate (WVTR)

On rubber sheets with the same rubber formulation as the RNS

WVTR = K (p1 - p2) / l

K = coefficient of permeation
 p = water vapor partial pressure
 (ΔPP = p1 - p2)
 I = layer thickness

Set up of the measurements:

Advantages:

- low temperature
- faster method (systematic inv.)

Rubber 1 sheet

Results:

Difference of Partial Pressure

 (ΔPP) is the driving force for
 vapor diffusion

2) Interpolation: We can calculate the WVTR at each T° knowing the ΔPP (T° and RH)

WVTR vs ΔPP : linear relation

Combining the two methods we can calculate the water loss at each storage conditions

Ex: Needle Volume (27 G RW) ~ 700 μg

Theoretical time necessary to "empty" a needle (RNS 1): 2 months at 25 °C, dry conditions

Clogging rate after 3 M at same conditions: 43% clogged

There must be a water-replacement mechanism preventing 100% full clogging

 \rightarrow Water replacement from the syringe barrel?

Increase of DPS concentration and viscosity:

Drying of a high concenztration mAb drop (left drying at room conditions: 23 °C, 40% rH

Weight change of a high concentration mAb drop (left drying at room conditions: 23 °C, 40% rH)

Tomography: cracks in the solidified material inside the needle

Increase of DPS concentration and viscosity:

mAb+blue dye in a needle glass, left open at room T°

configurations (storage at 40 °C, 25% rH)

- Segments shrink while drying
- While the segment closer to the needle tip is clogged, the remaining segments are still liquid (moving)
 - Segments closer to the needle tip dry earlier and faster
 - A solidified segment is sufficient to cause clogging
 - Formation of a porous clog (water vapor can pass through)→ water evaporation continues
 - Pressure resistant clog (no gas exchange at short time range)

Summary and conclusion:

^{\prime} Mechanism of liquid entering the needle is clarified: ΔP causes liquid in the needle (ΔT, mech.P, atm P fluctuations)

- ✓ The WVTR via different types of RNS was characterized
 ✓ The mechanism of WVT is clarified: linear dependency on the ΔPP
- importance of the correct storage conditions + shipping
- solvent evaporation is an important driving factor in the clogging phenomenon
- > Water loss can be predicted at certain storage conditions (based on the ΔPP)
- solvent evaporation can be tuned by choosing the appropriate <u>RNS rubber</u> formulation and/or <u>storage</u> <u>conditions</u>

Acknowledgements

Pharm. Dev. & Supplies: Device Development: RCTC needle clogging team Kewei **Yang**, Robert **Müller** Mathieu **Rigollet**, Frank **Bamberg**

University of Basel:

Prof. Thomas A. Jung

Paul Scherrer Institute (PSI):

: Christian **Grünzweig**, Pierre **Boillat**, David **Mannes**