

Information for Practical work 1+3

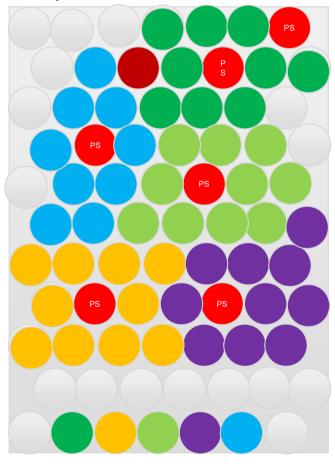
TO DO: Preparation

- 1. Compounding of formulations
 - Calculation of composition
 - Compounding
- 2. Filling
- 3. Stoppering
- 4. Freezing experiment with distilled water under vacuum to develop a general understanding of the critical temperature

Materials:

- active ingredients and excipients (BSA, Sucrose, Mannitol, His, HisHCl-H2O, PS20)
- water for injection
- Schott bottles and beakers; measuring cylinder
- calculator
- scale, magnetic stirrer, spatula
- pH-meter
- pipettes
- 20 mL vials
- Iyo stoppers
- thermo couples/ product sensors (2. day)

Preparation


Composition of formulations

#	Formulation	BSA	Excipient	Solid content (excipients)	Buffer system	Surfactant	Tg'	Fill volume	
1	Formulation 1	25 mg/mL	240 mM Sucrose	~80 mg/mL		0.02% (w/v) Polysorbat 20	~ -27	10 mL	
2	Formulation 2/3	-	240 mM Sucrose	~80 mg/mL	20 mM HisHCl pH		~ -32	10 mL	
3	1 Officiation 2/3							5 mL	
4	Formulation 4	-	120 mM Sucrose	~40 mg/mL	6.0		~ -32	10 mL	
5	Formulation 5	-	220 mM Mannitol	~40 mg/mL			~-1	10 mL	

Preparation - Loading

Proposal:

- 3 Lyophilizers
- One shelf per group andlyophilizer will be fully loaded (77 vials)
- Prepare scheme with different formulations including PAT sensors
- Program your receipe

- Calculate the volume needed per formulation depending on the loading scheme. Account for at least 10% overage.
- 2. Calculate the amount of excipients.
- 3. Calculate the amount of buffer needed.

As we are 3 groups – please consolidate and discuss who is preparing what and how much!

Preparation

Composition of formulations:

Formulation #	Number of vials	Fill volume	Total volume needed	Total volume prepared* (L)	BSA concentration (mg/mL)	BSA (g)	Excipient concentration (mM)	Excipient concentration (g/L)	Excipient (mg)	Tensid + buffer system
1		10 mL			25 mg/mL		240 mM Sucrose			
2		10 mL			-	-	240 mM Sugraga			20 mM HisHCl pH 6.0:
3		5 mL			-	-	240 mM Sucrose			+
4		10 mL			-	-	120 mM Sucrose			0.02% (w/v) PS20
5		10 mL			-	-	220 mM Mannitol			
Total										

* Include 10% loss

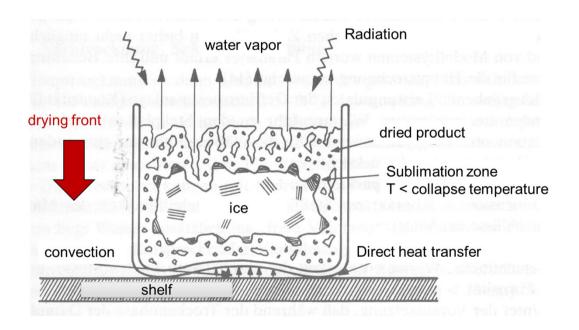
Molar Mass: Sucrose 342.3 g/mol Mannitol 182.2 g/mol

Buffer receipt 1L:

- 2.196 g of His-HCl Monohydrat
- 1.477 g of Histidin, freie Base
- Ad 1 L

Preparation

- 1. Prepare the buffer and add the surfactant.
- 2. Compound the formulations by using the prepared buffer system
- 3. Fill the formulations into the glass vials
- 4. Position the stoppers to allow for sublimation
- 5. Position the thermo couples


TO DO: @ the lyophilizer

- 1. Loading of the shelves
- 2. Positioning of the thermo couples
- 3. Programming of the lyophilization cycle
- 4. Start of the lyophilization program

Placement of thermo couples

For the correct position of a thermo couple / sensor to monitor product temperature, the tip of the sensor needs to just above the middle of the vial bottom.

	Epsilon 2-DLSC+	Epsilon 2-DLSC+	Epsilon2-4LSC+
PAT	Lyo I (controlled nucleation)	Lyo II	Lyo III
Pirani	X	X	X
MKS	X	X	-
Komparative Druckmessung	X	X	-
PT100	X	X	X
WTM+	X	X	X
LyoRx	X	X	X
Lyobalance	X	(X)	-
LyoCam	X	X	-
ΔΡ/Δt	X	X	-