

## Test Methods for Pre-Filled Syringes

Horst Koller, CEO, HK Packaging Consulting GmbH Roman Mathaes, PhD, Senior Group Leader, Lonza Drug Product Services

# Regulatory References for Finished Prefilled Syringes

ISO 11040-8 (under development)

**Prefilled Syringes** 

Part 8: Requirements and test methods for finished pre-filled syringes

ISO 11040-8 / under development (TC 76)

# Pre-filled syringes TM

**Regulatory Reference: 11040-8** 

**System characterization** 

**Barrel** 

**Plunger stoppers** 

**Additional components** 

# Pre-filled syringes TM

**Regulatory Reference: 11040-8** 

#### Physical system characterization

Break loose and extrusion forces

**Burst resistance** 

**Break resistance** 

**Closure system forces and torques** 

**Connectivity with fluid path connectors** 

Residual volume

**Needle penetration force** 

Needle pull-out force

**Anti-needlestick requirements** 

Liquid leakage

Markings

# Pre-filled syringes TM

**Regulatory Reference: 11040-8** 

#### Pharmaceutical requirements

- •Drug container interaction
- •Biological requirements
- Container closure integrity
- Deliverable volume

Particulates (visible and subvisible)

## Break loose and extrusion forces TM

#### **Principle**

Force testing with drug product filled syringe as designed for the intended use (including needle, environmental conditions etc.)

#### **Procedure**

ISO 11040 – 4; Annex E, Figure E.1.

## **Interpretation of Results**

As described in Annex E of ISO 11040-4

#### **Burst resistance TM**

#### **Principle**

Burst resistance testing with drug product filled syringe as designed for the intended use (including needle, environmental conditions etc.)

#### **Procedure**

ISO 11040 – 4; Annex G, Figure G.2.

With sealed front to allow actual burst pressure testing

## **Interpretation of Results**

Compare data of burst resistance testing with pre-defined burst pressure specification (as for the intended use)

#### **Burst resistance TM**

#### **Principle**

Burst resistance testing with drug product filled syringe as designed for the intended use (including needle, environmental conditions etc.)

#### **Procedure**

ISO 11040 – 4; Annex G, Figure G.2.

With sealed front to allow actual burst pressure testing

## **Interpretation of Results**

Compare data of burst resistance testing with pre-defined burst pressure specification (as for the intended use)

## **Break resistance TM**

#### **Principle**

Flange break resistance and Luer cone breakage resistance testing with drug product filled syringe as designed for the intended use (including needle, environmental conditions etc.)

#### **Procedure**

Flange break resistance ISO 11040 – 4; 5.4.4 applies (TM = Annex C) Luer cone break resistance ISO 11040 – 4; 5.4.5 applies (TM = Annex C)

## **Interpretation of Results**

Compare data of flange break and luer cone resistance testing with pre-defined breakage resistance specification ( as for the intended use)

# Closure system forces and torques TM

#### **Principle**

Closure system testing with drug product filled syringe as designed for the intended use (environmental conditions etc.)

#### **Procedure**

Closure system methods ISO 11040 - 4; G.3 – G.6 applies (TM = Annex G)

#### **Interpretation of Results**

Compare closure system forces and torque data with pre-defined closure specification ( as for the intended use)

# Connectivity with fluid path connectors TM

#### **Principle**

Fluid path connectors testing for connectivity and leakage with drug product filled syringe as designed for the intended use (environmental conditions etc.)

#### **Procedure**

Luer connector leakage method ISO 11040 – 4; (TM = Annex G) Connectivity following ISO 80369-1

## **Interpretation of Results**

Compare leakage results with pre-defined specification ( as for the intended use)

Specify and list possible connectors which can be used with the syringe

## Residual volume TM

#### **Principle**

Determine the residual volume with drug product filled syringe as designed for the intended use (needle, environmental conditions etc.)

#### **Procedure**

Follow ISO 11040 – 4; 6.5.1.3 applies (reference to ISO 7886-1; Annex C and ISO 11040-5)

## **Interpretation of Results**

Compare residual volume with pre-defined specification ( as for the intended use)

# Needle penetration force TM

#### **Principle**

Determine the needle penetration force with drug product filled syringe as designed for the intended use (environmental conditions etc.)

#### **Procedure**

**Follow ISO 11040 – 4; (Annex F)** 

## **Interpretation of Results**

Compare needle penetration forces with pre-defined specification (as for the intended use)

# Needle pull-out force TM

#### **Principle**

Determine the needle pull-out force with drug product filled syringe as designed for the intended use (environmental conditions etc.)

#### **Procedure**

Follow ISO 11040 - 4; 6.5.2.5 applies (TM = Annex G)

## **Interpretation of Results**

Compare needle pull-out forces with pre-defined specification (as for the intended use)

# Anti-needlestick requirements TM

## **Principle**

Determine the anti-needlestick prevention features with drug product filled syringe as designed for the intended use (environmental conditions etc.)

#### **Procedure**

Follow ISO 23908

Testing activation of sharp injury protection feature

Challenge the device in safe mode

## **Interpretation of Results**

Compare results with pre-defined specification (as for the intended use)

# Anti-needlestick requirements TM

## **Principle**

Determine the anti-needlestick prevention features with drug product filled syringe as designed for the intended use (environmental conditions etc.)

#### **Procedure**

**Follow ISO 23908** 

Testing activation of sharp injury protection feature

Challenge the device in safe mode

## **Interpretation of Results**

Compare results with pre-defined specification (as for the intended use)

# Liquid leakage TM

#### **Principle**

Determine the leakage resistance of the plunger during use, with drug product filled syringe as designed for the intended use (environmental conditions etc.)

#### **Procedure**

Follow ISO 7886-1 – 4; (Annex B)
300 kPa / 30s [>10ml syringe = 200 kPa / 30s]

## **Interpretation of Results**

Shall be no leakage of drug product beyond the plunger stopper

# Markings TM

#### **Principle**

Determine the accuracy of the label / marking of drug product filled syringe as designed for the intended use (environmental conditions etc.)

#### **Procedure**

N/A no reference made [ISO 7886-1]

## **Interpretation of Results**

Verify accuracy of printing on syringe and/ or label placement according to pre-defined specifications

# Biological requirements TM

#### **Principle**

Determine endotoxin level and perform biological hazard assessment ISO 10993-1 (sterility over shelf-life including transportation)

#### **Procedure**

Enotoxin limits and methods follow pharmacopoeial requirement Sterility methods follow pharmacopoeial requirement Biocompatibility evaluation according to ISO 10993-1 classification

## **Interpretation of Results**

Consider results for sterility and safety of syringe system

# Container closure integrity TM

#### **Principle**

Check the integrity of the final PFS system (sterility over shelf-life including transportation)

#### **Procedure**

Validate a suitable physical, chemical or microbiological container closure integrity test method.

[vacum decay, high voltage leakage, tracer gas detection..]

## **Interpretation of Results**

Consider results for sterility and safety of syringe system

## Deliverable volume TM

#### **Principle**

Check the deliverable volume of the final drug product filled syringe as designed for the intended use.

#### **Procedure**

Follow instructions of use and determine dose.

Dose accuracy of PFS in NIS follow ISO 11608-1

## **Interpretation of Results**

Compare actual deliverable volume with the labelled drug dose.

# Particulates (visible and subvisible) TM

#### **Principle**

Check visible and subvisible particulates of the final drug product filled syringe as designed for the intended use.

#### **Procedure**

Follow instructions pharmacopoeial requirements [ISO 11040-4; Annex D for subvisible particulates]

## **Interpretation of Results**

Compare actual particle contamination with pre-defined specification.

## FDA Requirement TM

#### **Problem**

ISO 11040-4 compliant PFS in combination with a needleless luer activated devices (NLAD's) → ISO 594 Device (Thread)

# FDA Guidance (non binding recommendations)

#### **Functional Performance**

\*"additional test request"

- Seal Integrity (liquid leakage, air ingress, dye ingress)
- •Glide force
- Break force
- Separation force
- Unscrewing torque
- Ease of assembly
- Resistance to overriding
- Stress cracking
- •Validation of graduation markings
- Dead space
- Coring needle test\*
- Anti-needlestick mechanism
- Connectivity (needles, adapter, tubing, sharp prevention features)
- •Injection force (during use)
- Tip cap removal
- Piston seal blowback

# FDA Guidance (non binding recommendations)

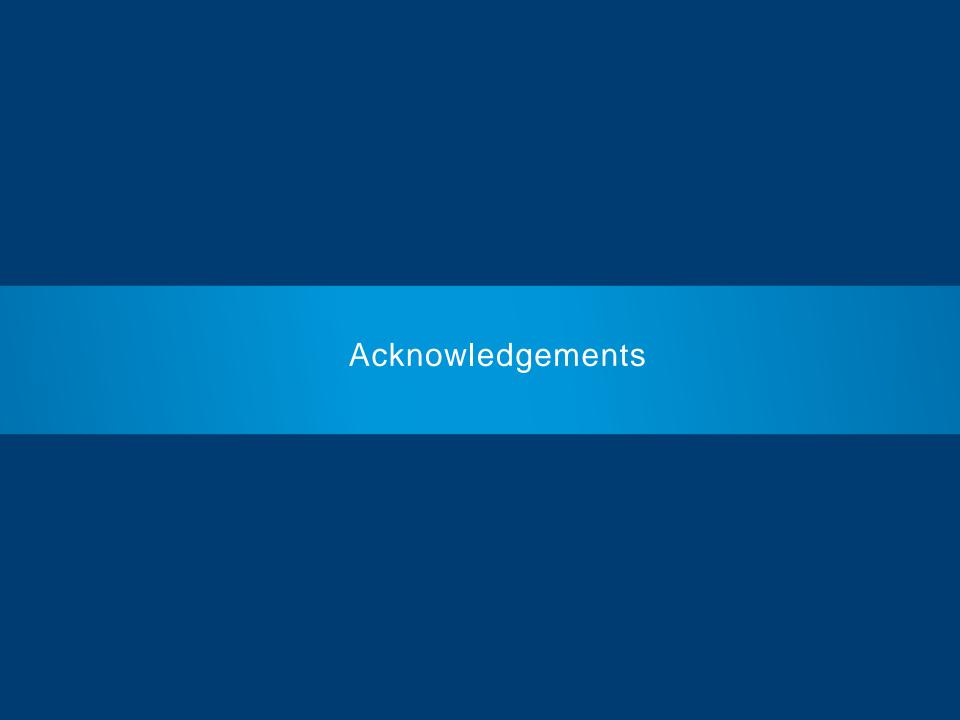
#### **Functional Performance**

- Biocompatibility (ISO 10993)
- •Sterilization (ISO 11135 EO or 11137- Radiation)
- •Human Factors (Design Control requirements 21 CFR part 820)
- PFS and Co-packages (empty glass syringe)
- Other testing (lyophilized etc)
- PFS / device compatibility

# Coring needle test TM

\* current revision

## Principle


Check if rubber particles are present after rubber penetration

#### **Procedure**

Follow pharmacopoeia USP\* <381>; Ph Eur\* 3.2.9; JP\* 7.03 ISO 8871-series (Elastomeric parts for parenterals)

## **Interpretation of Results**

Check for visible fragments; Shall be < 5 pcs (>50μm)

