

Glass Handling Best Practices for Glass Primary Containers

PDA Training Course, Mainz, September 12th/13th 2018

Dr. Karl Siemoneit Head of Quality Supplier Management Sanofi Site Frankfurt Insulin

- 1 Requirements (from pharmacopoeias) regarding incoming inspection
- 2 How to do it in practice
- 3 What to consider or to avoid (examples)
- 4 Coordination process between packaging manufacturer and customer

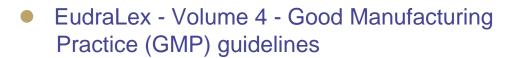
General Remarks

- Packaging is an integral part of any pharmaceutical product
- It affects quality, stability and identification of drug product
- Provides an adequate degree of protection
- Should not interact physically or chemically with drug product
- No risk of toxicity

- Quality requirements for primary glass container for drug product filling are continously increasing
- Fast running filling lines require smooth supply of packaging components
- Supply of packaging material from different suppliers may result in certain variations within agreed tolerances, which may require re-adjustments of filling lines
- Special requirements for
 - Pen-Systems or Auto-Injectors
 - New products or special applications

- 1 Requirements (from pharmacopoeias) regarding incoming inspection
- 2 How to do it in practice
- 3 What to consider or to avoid (examples)
- 4 Coordination process between packaging manufacturer and customer

- Legal Requirements
- Acceptance Criteria & Test Parameter
- Test Methods
- Documentation
- Defect Evaluation Lists / Technical Report


• EU GMP Guideline, Part I, Chapter 1

Pharmaceutical Quality System

<u>Arrangements</u> are made for the manufacture, <u>supply</u> and <u>use</u> of the <u>correct</u> starting and <u>packaging materials</u>, the selection and monitoring of suppliers and for <u>verifying</u> that <u>each delivery</u> is <u>from the approved supply chain;</u>

ANNEX 8 SAMPLING OF STARTING AND PACKAGING MATERIALS

Principle

<u>Sampling</u> is an important operation in which only a small fraction of a batch is taken. Valid conclusions on the whole cannot be based on tests which have been carried out on non-representative samples. Correct sampling is thus an essential part of a system of Quality Assurance.

Packaging material

5. The sampling plan for packaging materials should take account of at least the following: the <u>quantity received</u>, the <u>quality required</u>, the nature of the material (e.g. primary packaging materials and/or printed packaging materials), the production methods, and what is known of the Quality Assurance system of the packaging materials manufacturer based on audits. The number of <u>samples</u> taken should be determined <u>statistically and specified in a sampling plan</u>.

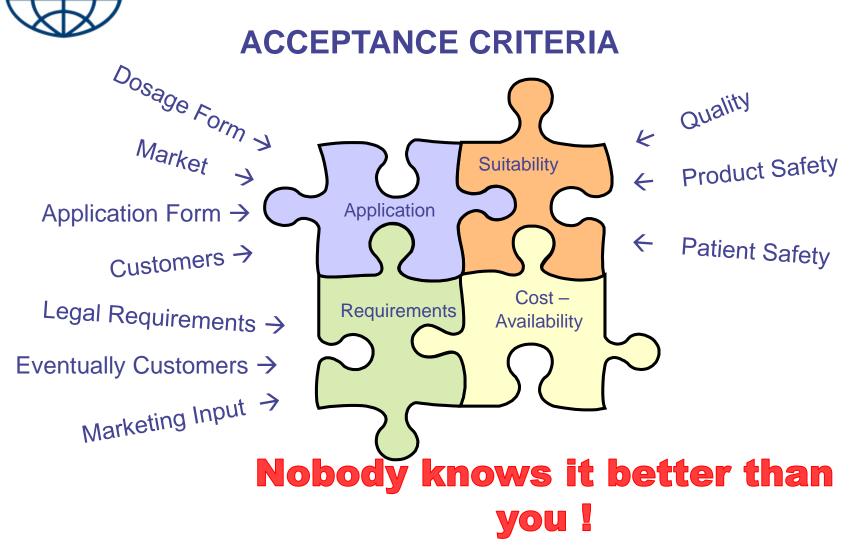
- (a) There shall be <u>written procedures describing</u> in <u>sufficient detail</u> the receipt, identification, storage, handling, <u>sampling</u>, <u>testing</u>, <u>and approval</u> <u>or rejection</u> of components and drug product <u>containers and closures</u>; such written procedures shall be followed.
- (d) Each container or grouping of containers for components or <u>drug</u> <u>product containers</u>, or closures shall be identified with a <u>distinctive code</u> <u>for each lot</u> in each shipment received. This code shall be used in recording the <u>disposition of each lot</u>. Each lot shall be appropriately identified as to its status (i.e., quarantined, approved, or rejected).

Sec. 211.84 Testing and approval or rejection of components, drug product containers, and closures

- (5) Sample containers shall be identified so that the following information can be determined:
 - name of the material sampled,
 - the lot number,
 - the container from which the sample was taken,
 - the date on which the sample was taken, and
 - name of the person who collected the sample.

...Containers and closures shall be tested for conformity with all appropriate written specifications. ..

- Specifications / Acceptance Criteria
 - What are acceptance criteria?
 - Who specifies these criteria?
- Test Parameter
 - Definition of test parameter
- Test Methods
 - Identification of methods based on test parameter



ACCEPTANCE CRITERIA

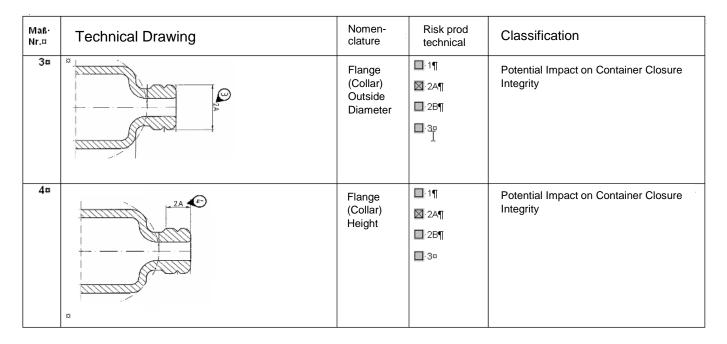
... based on the intended use of the glass container

- Dosage form?
- Which markets? EU/ US/ JP
- Kind of application? Oral, Injection, Inhalation
- Legal regulations and laws? AMG, Ph.Eur., USP, JP, cGMP

TEST PARAMETER

... can be defined based on Acceptance Criteria

Physical / Chemical	Pharmacopeia Regulations Standards
Microbiological	Pharmacopeia Internal conditions
 Dimensional 	Technical drawings Engineering standards Product & process requirements
Visual - Inspection by attributes	Product & process requirements PDA Technical Report 43 Defect Evaluation List



- Requirements from pharmacopeias, regulations and defect evaluation lists are important and can be used in general
- Specific requirements may need to be defined individually and mutually agreed with the supplier!

• Example of an individual risk based defect categorization

A joint risk assessment of packaging components with manufacturing can also increase the acceptance of incoming inspection activities!

			EXAMPLES / BEISPIELE			
Description	Category /	AQL-Level	Comment /	Defect sample /	Sample according to specification /	
Fehlerbeschreibung	Kategorie		Bemerkung	Schlechtmuster	Gutmuster	
Form burrs and scars > 1 mm ² on the outer surface of the glass barrel; closure integrity not impaired	cosmetic	6.5	Marks on head of cartridge			
Formmarken und narbige Erscheinungen > 1 mm²auf der Glaskörperaußen- oberfläche; Dichtigkeit nicht beeinträchtigt	kosmetisch	6,5	Rattermarken am Konus		Columb	
			Wrinkles on head of cartridge <i>Quetschfalten</i> <i>am Bördelkopf</i>			

Define the risk of the individual parameter and acceptance level!

Connecting People, Science and Regulation®

• **Test Methods** finally derive from established **Test Parameter**

- Accuracy of the method
 - Tolerance (decimal place) of dimensions in the technical drawing?
- Extent of inspection
 - What needs to be tested for individual batches (inspection level)?
- Test interval
 - Complete / reduced testing
 - Identity, monitoring or skip lot?

CHEMICAL TESTING

• Determination of the hydrolytic resistance is an important parameter to guarantee the quality of the glass composition.

• Just to resume ...

Type I glass
borosilicate; only for tubing; in compliance with
Pharmacopeia requirements for injectable liquids because of its high
chemical durability; lower thermal expansion; flint or amber

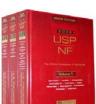
Type II glass \Box soda-lime treated on inner surface (0.5 mm) to remove free alkali ions; high chemical durability; only for tubing; high thermal expansion; non suitable for injectable liquids; only light amber

Type III glass
soda-lime; moderate chemical durability; for tubing and moulding; high thermal expansion; non suitable for injectable liquids; variously coloured.

CHEMICAL TESTING

Relevant USP Glass Testing Procedures

USP/NF Section <660> Type I Highly Resistant Borosilicate Glass


- Hydrolytic Resistance Glass Grains
- Surface Glass Test
- Arsenic USP <211>
- Light Transmission (Amber)

Relevant European Pharmacopeia Testing

EP 3.2.1 Glass Containers for Pharmaceutical Use

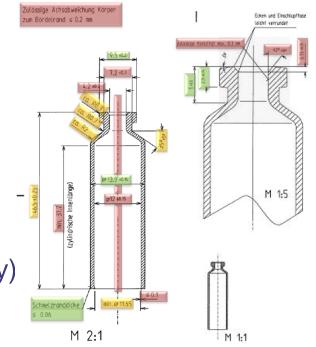
Relevant Japanese Pharmacopeia

JP 7. Test for Containers and Packaging Materials 7.01 Test for Glass Containers for Injections

THE JAPANESE PHARMACOPOEL

Endotoxin- / Bioburden- Testing

Endotoxin LAL-Test (according to Ph. Eur. 2.6.14 ; USP <85>, JP)


Bioburden (according to Ph. Eur. 2.6.1; USP <71>, JP)

- Caliper
- Micrometer caliper
- Outside micrometer
- Plug gauge
- Profile projector (manual or electronically)
- Electronic camera control system

- VISUAL INSPECTION INSPECTION BY ATTRIBUTES
 - Special attention should be taken on visual nonconformities to align incoming inspection parameter with the relevant control units of the filling / inspection lines
 - Defects are described and classified
 - PDA Glass Task Force Technical Report 43
 - Edito Cantor Defect Evaluation List

Connecting People, Science and Regulation®

• These reports provide a general overview of defects including a classification of the potential criticality

CRITICAL - MAJOR - MINOR

to support a quality decision-making process

- The characteristics of these defects can vary, therefore the acceptance level should be individually defined
- The sensitivity of the control units should also be taken into consideration
- Defects may not be equally distributed across the batch manufacturing process
 Orange Peel Location: Finish/Neck
 Class: Minor (Limit Sample)

	Table of	Contents			
1.0 INTROD	UCTION	4.2.1 V	ials		
1.1 Purp	ose and Scope1		impoules		
		4.2.3 0	artridges 2		
2.0 GLOSSA	RY OF TERMS2	4.2.4 Syringes			
		4.3 Reinspection of Glass Containers			
	ONTAINER CONFORMANCE	4.4 Docu	mentation and Training 3		
	ATION DEVELOPMENT PROCESS4	E O CONCLUS	SION 3		
3.1 Glass	Container Dimensional Development 4	5.0 CONCLUS	SIUN		
3.2 Glass	Container Sampling		CES 3		
	Definition of Lots				
	ampling Plans		ed Glass Container Lexicon		
3.2.2	2 Lot-to-Lot Sampling 6		ar Glass Container Lexicon: Vials		
3.2.2	3 Defective Parts Per Million		er Glass Container Lexicon: Ampoules9 er Glass Container Lexicon: Cartridges12		
3.2.3	QLs		r Glass Container Lexicon: Svringes 15		
	ONCONFORMITIES LEXICONS	7.0 REFEREN	ES		
4.1 Molded Glass Container Lexicon					
4.1 Mold	ed Glass Container Lexicon 10				
4.1 Mold 4.2 Tubul	ed Glass Container Lexicon	8.0 ADDITION	IAL READING18		
4.2 Tubul IGURES ANI able 3.2.3-1	ar Glass Container Lexicons		IAL READING		
4.2 Tubul FIGURES ANI Table 3.2.3-1 Table 4.1-1	ar Glass Container Lexicons		Tubular Glass Ampoules Lexicon:		
4.2 Tubul IGURES ANI able 3.2.3-1 able 4.1-1 igure 4.1-1	rr Glass Container Lexicons	Figure 4.2.2-2 Table 4.2.3-1	Tubular Glass Ampoules Lexicon: Example B		
4.2 Tubul IGURES ANI able 3.2.3-1 able 4.1-1 igure 4.1-1	ar Glass Container Lexicons	Figure 4.2.2-2 Table 4.2.3-1	Tubular Glass Amposles Lexicon: Example B		
4.2 Tubul IGURES ANI able 3.2.3-1 able 4.1-1 igure 4.1-1 igure 4.1-2	rr Glass Container Lexicons	Figure 4.2.2-2 Table 4.2.3-1 Figure 4.2.3-1	Tubular Glass Ampoules Lexicon: Example B		
4.2 Tubul IGURES ANI able 3.2.3-1 able 4.1-1 igure 4.1-1 igure 4.1-2 able 4.2.1-1	Glass Container Lexicons	Figure 4.2.2-2 Table 4.2.3-1 Figure 4.2.3-1	Tubular Gissa Amposles Lexicon: Example B		
4.2 Tubul IGURES ANI able 3.2.3-1 able 4.1-1 igure 4.1-1 igure 4.1-2 able 4.2.1-1 igure 4.2.1-1	rr Giss Container Lexicons	Figure 4.2.2-2 Table 4.2.3-1 Figure 4.2.3-1 Figure 4.2.3-2	Tabular Glass Ampoules Lexicon: Example 8		
4.2 Tubul FIGURES ANI Table 3.2.3-1	ar Glass Container Lexicons	Figuro 4.2.2-2 Table 4.2.3-1 Figuro 4.2.3-1 Figure 4.2.3-2 Table 4.2.4-1	Tubular Glass Amposles Lexicon: Example B		

Excerpt TR 43 PDA Glass Task Force

Glass Nonconformity Lexicons (PDA TR 43)

- **CRITICAL** A Nonconformity that is likely to result in personal injury or potential hazard to the patient (including defects that compromises the integity of the container.
- **MAJOR A** ... leading to serious impairments e.g. a malfuction that makes the packaging unusable
- **MAJOR B** Impairments of a lesser degree e.g. reduced efficiency in production
- **MINOR** Nonconformity that does not impact product quality or process capability
- **N/A** An imperfection not classified as nonconformity

Minor defects can result in significant disruption and yield losses on the filling / inspection lines

Excerpt TR 43 PDA Glass Task Force

Connecting People, Science and Regulation®

Sampling for Incoming Inspection

• 21CFR820.250 – Statistical Techniques

"(a) Where appropriate, each manufacturer shall establish and maintain procedures for identifying valid statistical techniques required for establishing, controlling, and verifying the acceptability of process capability and product characteristics.

(b) Sampling plans, when used, shall be written and based on a valid statistical rationale. Each manufacturer shall establish and maintain procedures to ensure that sampling methods are adequate for their intended use and to ensure that when changes occur the sampling plans are reviewed. These activities shall be documented."

Defects and Acceptance Levels

 Prevailing method for evaluation of defects: Commonly used Acceptance Sampling Plans

- Widely used sample inspection system originally developed as U.S. military standard 105E plans
- The AQL system (Acceptable Quality Limits) has been accepted by national and international quality associations (DIN ISO Norm 2859, ASQ/ANSI).
- Provides acceptance and rejection rates based on a normal statistical distribution

- Defects and Acceptance Levels
 - The control sample unit (Tailgate samples) is important for the evaluation of defects
 - Samples should be representative and randomized across the entire batch
 - The number of samples for incoming inspection depends on the batch size and the defined AQL
 - The AQL represents the percentage of defects routinely accepted

- DIN ISO 2859 has different levels for reduced, normal and tightened inspection
- Influencing on the certainty when accepting or rejecting material and the inspection cost

		Special Inspection Levels				General Inspection Levels		
	Losumfang		§ 2	S 3	S 1	1		ш
:	Lot Size	Α	А	А	A	A	A	В
9	bis 15	A	Α	A	A	A	в	с
16	bis 25	Α	А	в	В	в	с	D
26	bis 50	Α	в	в	С	С	D	E
51	bis 90	в	в	С	С	С	E	F
91	bis 150	в	в	С	D	D	F	G
151	bis 280	в	С	D	E	Е	G	н
281	bis 500	в	С	D	E	F	н	J
501	bis 1 200	С	с	E	F	G	J	к
1 201	bis 3 200	С	D	E	G	н	к	L
3 201	bis 10 000	с	D	F	G	J	L	М
10 001	bis 35 000	с	D	F	н	к	M	Ν
35 001	bis 150 000	D	E	G	J	L	N	P
150 001	bis 500 000	D	E	G	J	М		Q
500 001	und mehr	D	E	н	к	N	Q	R

Excerpt DIN ISO 2859

- Code letter defines the number of Tailgate Samples for inspection
- Acceptance / rejection numbers are listed in the AQL columns

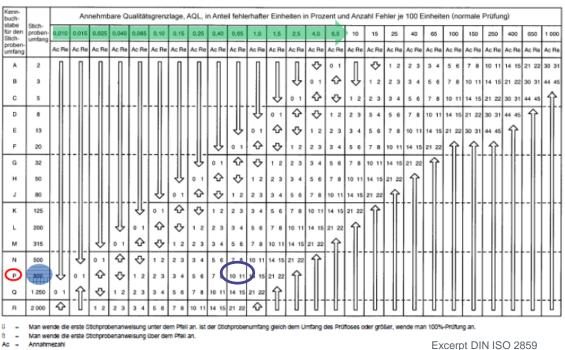


Tabelle 2-A - Single Sampling Plan (Normal Inspection)

Rückweisezah

- Acceptance limit 10 Rejection limit 11
- 0.65% AQL Quality Statement:

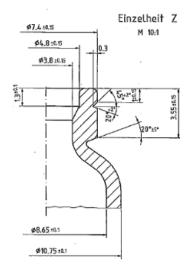
"If you sample 800 and use the acceptance criteria of accept on 10, reject on 11, you have ~95% probability of accepting the batch if it contains 0.65% defects or less"

- In most cases Tailgate samples are pulled by the supplier during manufacturing
- Sampling is an important process in operation
- Valid conclusions on the whole batch can only be made on representative samples
- Correct sampling is an essential part of the supplier Quality Assurance practice
- Samples are packed separately by the supplier and delivered with the batch shipment

END OF PART 1

Connecting People, Science and Regulation®

- 1 Requirements (from pharmacopoeias) regarding incoming inspection
- 2 How to do it in practice
- 3 What to consider or to avoid (examples)
- 4 Coordination process between packaging manufacturer and customer

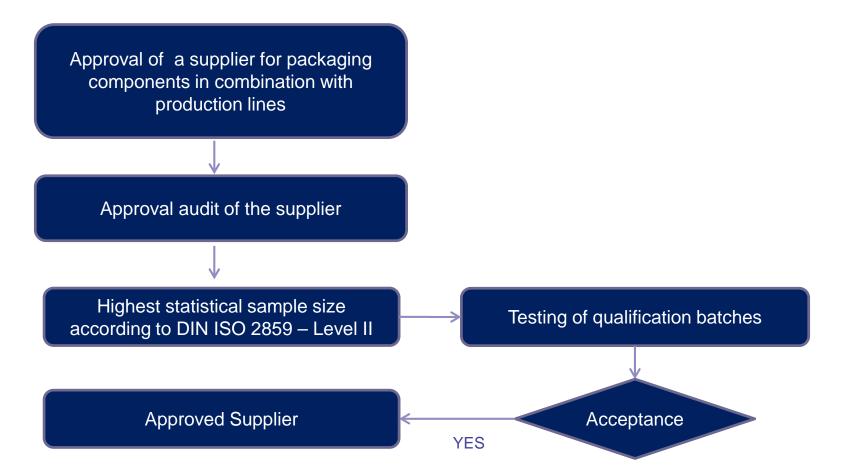


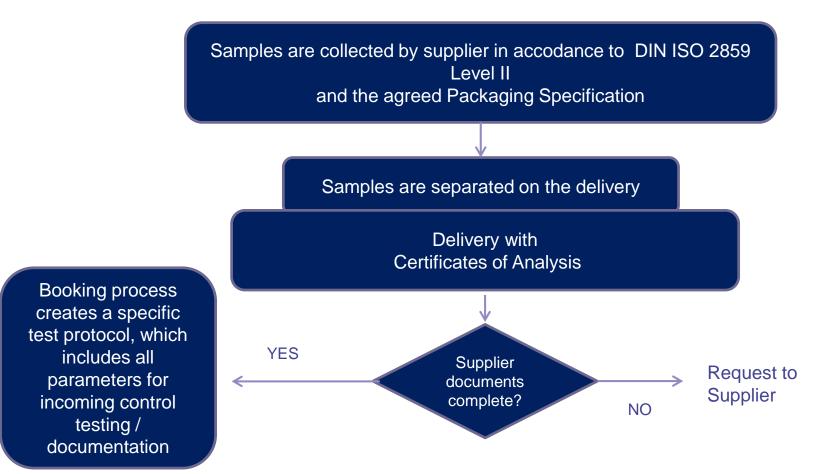
- Specification
- Sampling
- Sample size
- Equipment, Tools
- Documentation
- Supplier Certification

Specifications (EU-GMP; Cap. 4)

- Describe in detail the requirements with which the products or materials used or obtained during manufacture have to conform. They serve as a basis for quality evaluation
- All documents describing the material belong to the specification
 - Technical Drawing
 - Material Characteristics
 - Regulatory Requirements (e.g. Ph. Eur.; USP; JP)
 - Test Parameter
 - Certification of Parameter

Specifications (EU-GMP; Kap. 4)


- Batch testing / release is based on these documents
- It is recommended to agreed on inspection methods upfront with supplier
 - Visual Inspection (visual devices)
 - Specific methods not described in literature
 - Method comparison
 - Accuracy of measurement



Supplier Approval Process

Tailgate Samples with each Delivery

Index of a Packaging Material Specification (Example)

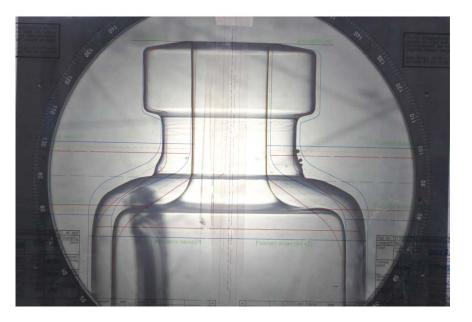
- 1. Material Specific Chapter Technical Drawing
- 2. General Chapter
- 2.1 Material & Design
- 2.2 References & Standards
- 2.3 Packaging Instructions
- 2.4 Quality Acceptance Criteria
- 2.5 Supplier control samples (sampling plan)
- 3. Characteristics / Specifications
- 3.1 Criteria for Batch Release
- 3.2 Additional Criteria e.g. glass grain test anually
- 3.3 Specific Criteria e.g. micobial testing
- 4. Sample Procedure & AQL Acceptance


- ⇒ Correct pallets used (heat treated)
- ⇒ Correct labeling
- ⇒ Visible damage
- Documents (delivery slip, certificates)
- Correct supply chain (manufacturing site)

How to do it in practice

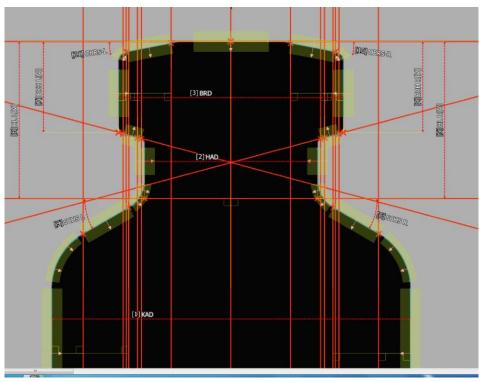
Example of an two phase inspection approach (by attributes)

Visual Inspection


- In order to standarize the inspection it can be helpful to use the method described in Ph. Eur. Method 2.9.20. Particulate Contamination: Visible Particles. Terms and conditions are defined.
 - Intensity of light
 Period under review
 Viewing background

• Manual Profile Projector: Dimensional evaluation with specification template without data logging

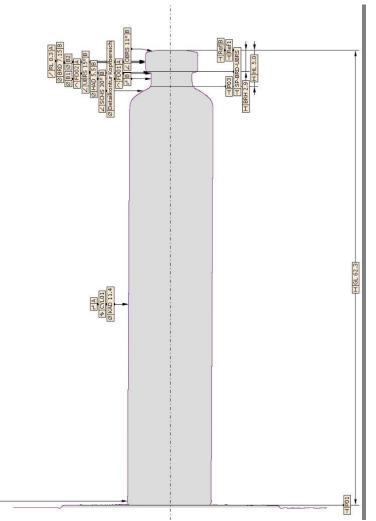
Manual measuring devices or electronic camera systems



• Set up of a camera system: Reference lines and intercept points to be defined

How to do it in practice

Dimensional Inspection

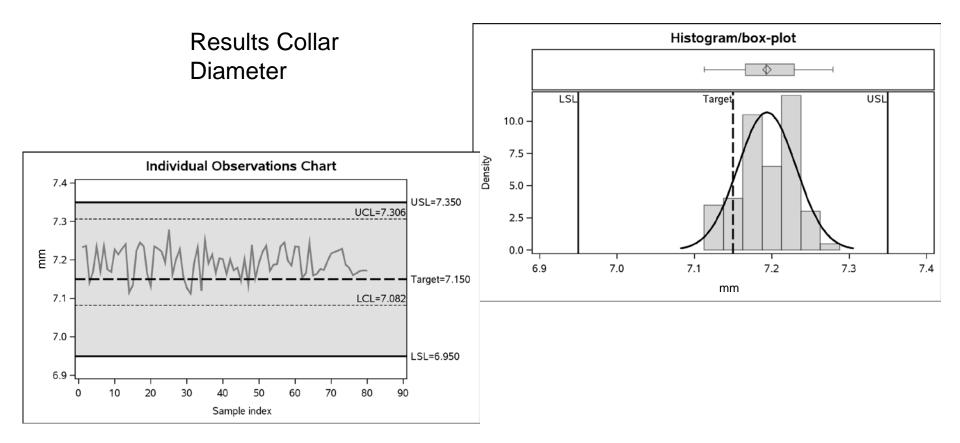


How to do it in practice

Dimensional Inspection

Ø ADS A

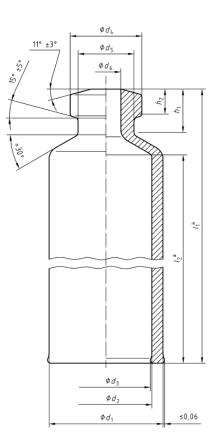
Unit of measurement	Characteristics				
mm	Glazing ring diameter				
mm	Body diameter				
mm	Neck diameter				
mm	Flange diameter				
mm	Flange height				
mm	Neck height				
mm	Total lenght				
o	Upper locking ring angle				
o	Lower locking ring angle				
o	Shoulder angle				
mm	Excentricity				


- Three-dimensional rotation-symetric results
- Contact-free measurement
- Evaluation of multiple parameter of complex bodies

- Supplier documentation
 - Certificate
 - Specifications
 - Test Protocol
 - Delivery slip
- Inspection documentation
 - Dimensional Test Results
 - Chemical Test Results
 - Visual Inspection Results
 - Test Protocols
 - Log Books

Test Methods Standard Operating Procedures Specifications

How to do it in practice



- 1 Requirements (from pharmacopoeias) regarding incoming inspection
- 2 How to do it in practice
- 3 What to consider or to avoid (examples)
- 4 Coordination process between packaging manufacturer and customer

• Glass container for the pharmaceutical industry are standardized

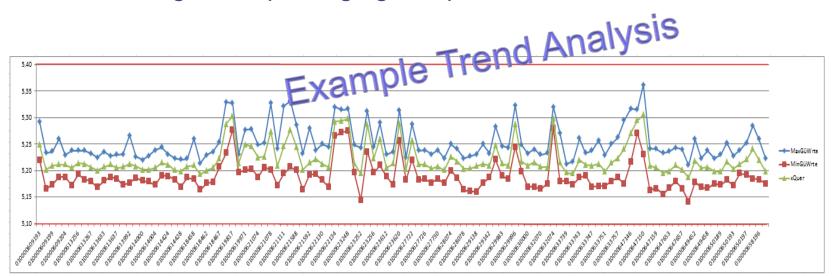
Maße in mm Dimensions in mm

Maße in mm Dimensions in mm

d ₁	Grenz- abm.	d ₂	Grenz- abm.	d ₃	d ₄	Grenz- abm.	d ₅	Grenz- abm.	d_6	Grenz- abm.	h ₁	Grenz- abm.	h ₂	Grenz- abm.
	tol.		tol.			tol.		tol.		tol.		tol.		tol.
	±		±	min.		±		±		±		±		±
8,65	0,1	6,85	0,1	6,55	7,15	0,2	5,5	0,35	3,15	0,2	5,0	0,20	2,9	0,1
10,85	0,1	8,65	0,1	8,35	7,15	0,2	5,5	0,35	3,15	0,2	5,0	0,20	2,9	0,1
10,95	0,15	9,25	0,1	8,95	7,15	0,2	5,5	0,35	3,15	0,2	5,0	0,20	2,9	0,1
11,60	0,15	9,65	0,1	9,35	7,15	0,2	5,5	0,35	3,15	0,2	5,0	0,20	2,9	0,1
14,00	0,15	12,00	0,15	11,65	9,5	0,2	7,6	0,35	4,5	0,2	5,0	0,50	2,9	0,15
14,45	0,15	11,85	0,15	11,50	9,5	0,2	7,6	0,35	4,5	0,2	5,0	0,50	2,9	0,15
18,25	0,15	16,05	0,15	15,50	9,5	0,2	7,6	0,35	4,5	0,2	5,0	0,50	2,9	0,15

Excerpt DIN ISO 13926-1

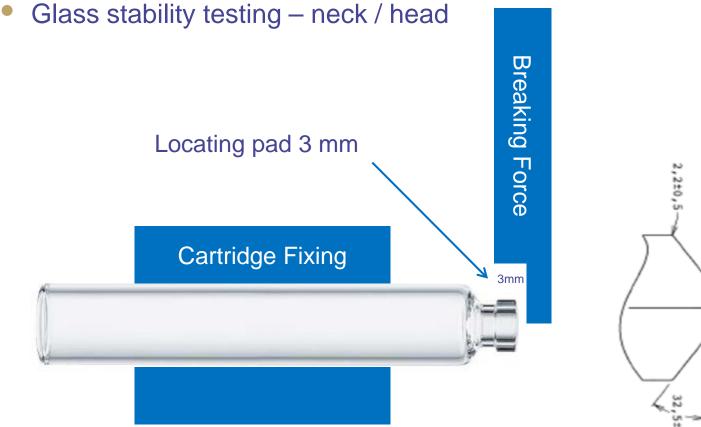
- However, these standardized tolerances might lead to unacceptable variances of certain dimensions especially on fast running filling lines
- See table h1 and h2 for flange height: This can result in variances of ± 0,20 mm to ± 0,50mm depending on the format!

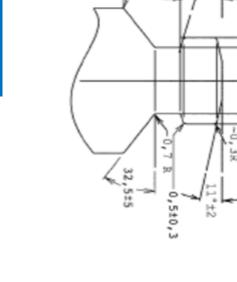

Maße in mm Dimensions in mm

d ₁	Grenz- abm.	d ₂	Grenz- abm.	d ₃	d_4	Grenz- abm.	d_5	Grenz- abm.	<i>d</i> 6	Grenz- abm.	h ₁	Grenz- abm.	h ₂	Grenz- abm.
	tol.		tol.			tol.		tol.		tol.		tol.		tol.
	±		±	min.		±		±		±		±		±
8,65	0,1	6,85	0,1	6,55	7,15	0,2	5,5	0,35	3,15	0,2	5,0	0,20	2,9	0,1
10,85	0,1	8,65	0,1	8,35	7,15	0,2	5,5	0,35	3,15	0,2	5,0	0,20	2,9	0,1
10,95	0,15	9,25	0,1	8,95	7,15	0,2	5,5	0,35	3,15	0,2	5,0	0,20	2,9	0,1
11,60	0,15	9,65	0,1	9,35	7,15	0,2	5,5	0,35	3,15	0,2	5,0	0,20	2,9	0,1
14,00	0,15	12,00	0,15	11,65	9,5	0,2	7,6	0,35	4,5	0,2	5,0	0,50	2,9	0,15
14,45	0,15	11,85	0,15	11,50	9,5	0,2	7,6	0,35	4,5	0,2	5,0	0,50	2,9	0,15
18,25	0,15	16,05	0,15	15,50	9,5	0,2	7,6	0,35	4,5	0,2	5,0	0,50	2,9	0,15

Excerpt DIN ISO 13926-1

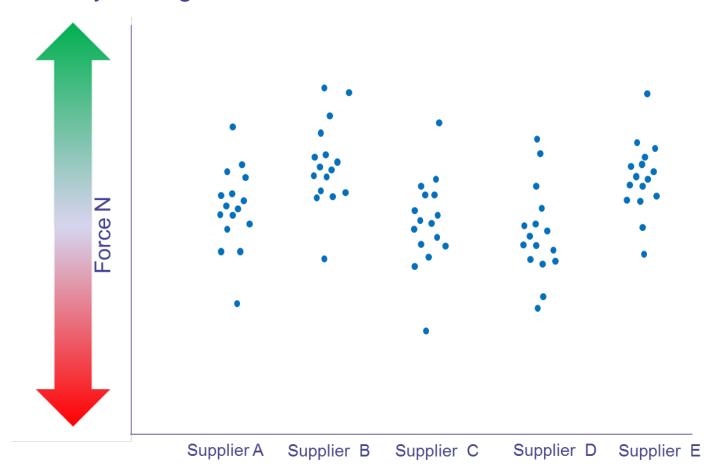
- It can be important to know and understand the characteristics of the container of individual suppliers and their forming lines
- Monitoring of critical dimensional characteristics can give a good understanding of the packaging components





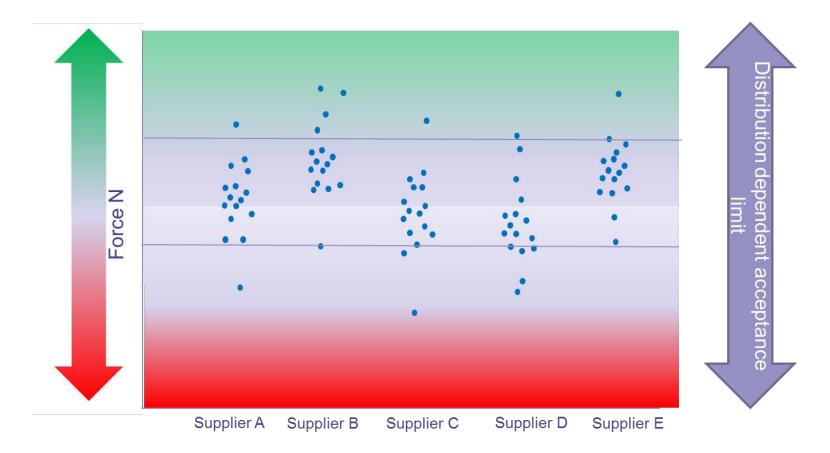
Glass strength and breakage risk

- Glass has no elastic constant for stability
- Small superficial defects can have an impact on stability and breaking resistance
- Glass to glass contacts during processing can be critical
- Methods for investigation

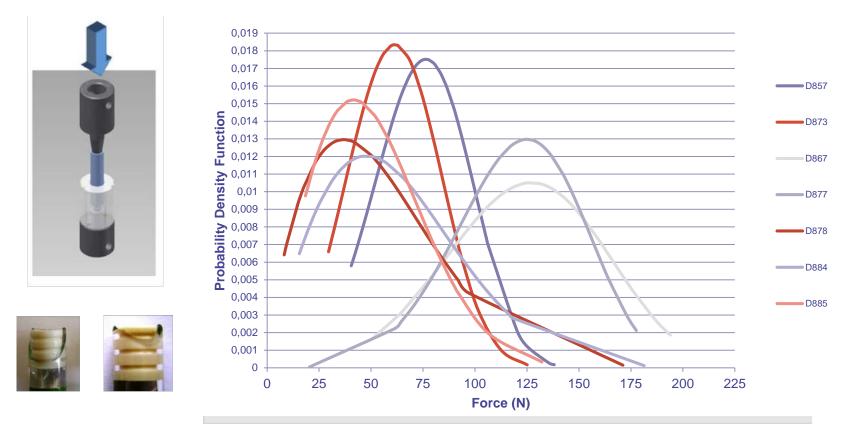


7,15±0,2 S

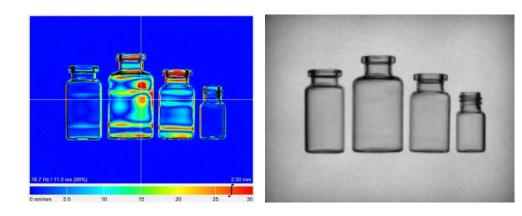
53 ŝ



Glass stability testing results



Glass stability testing results



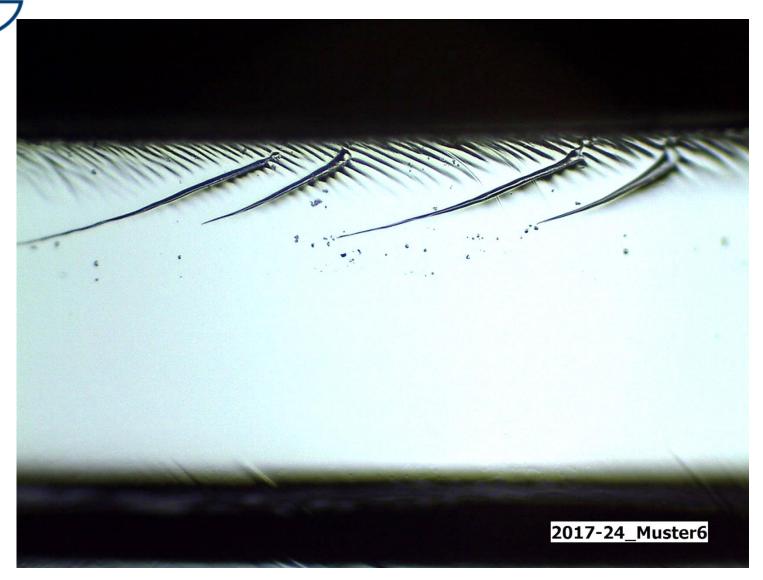
Glass stability testing – stopper mouth

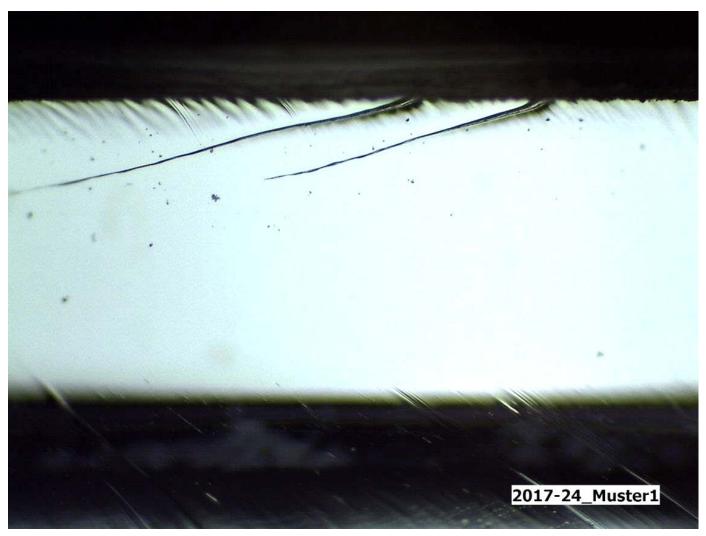
Identification of residual stress

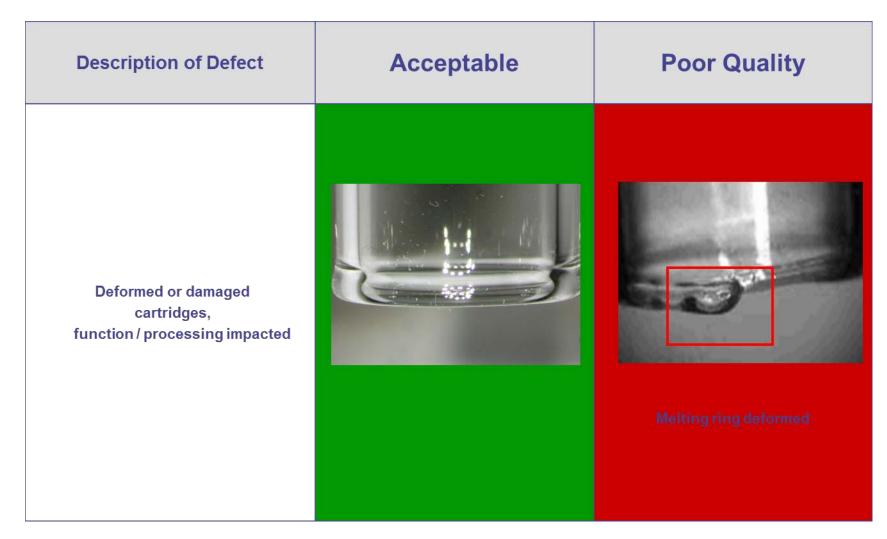
StrainScope S4 - ilis

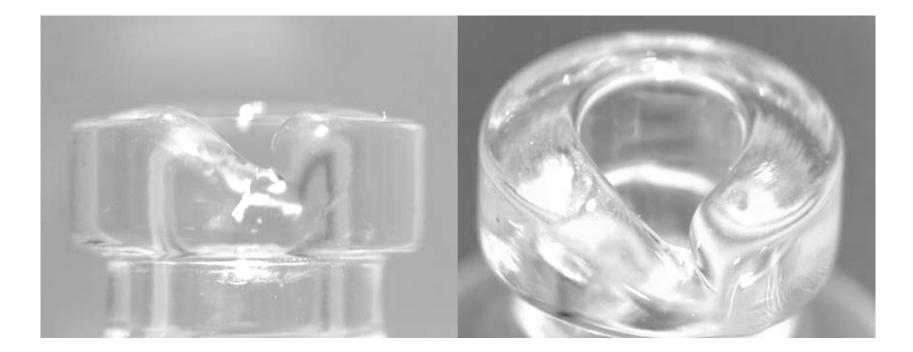
- GMP compatible photograpic documentation
- Fast multiple sample testing

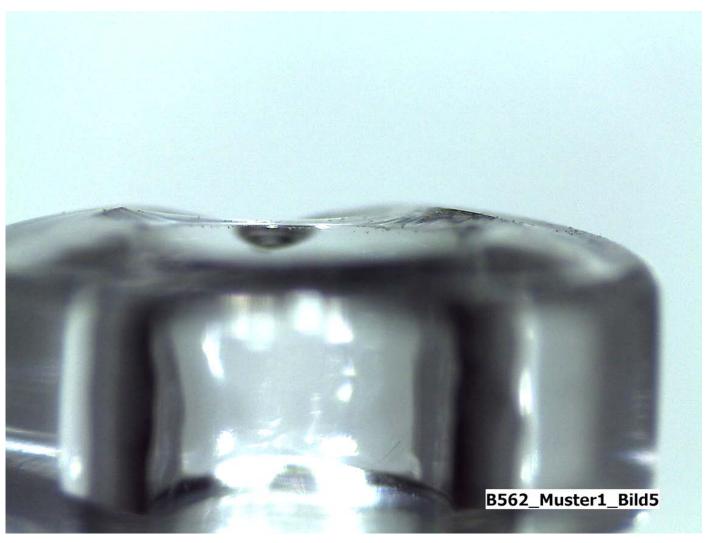
- Defects / Imperfections not always distributed across the entire batch
- Rare or nested defects may not be detected during incoming control

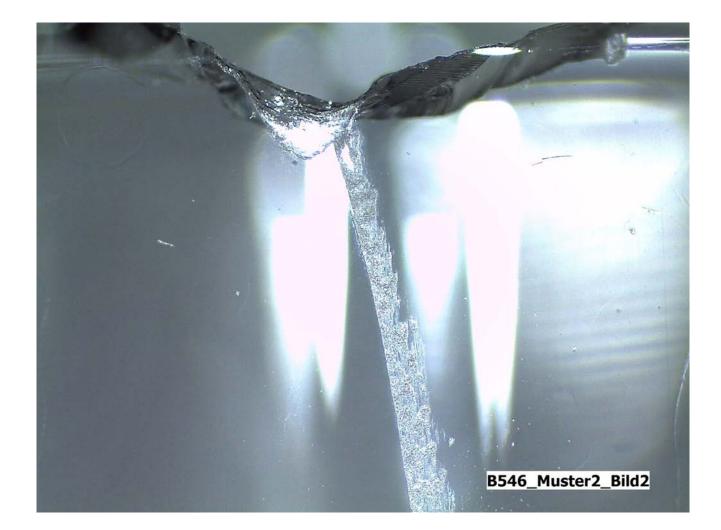


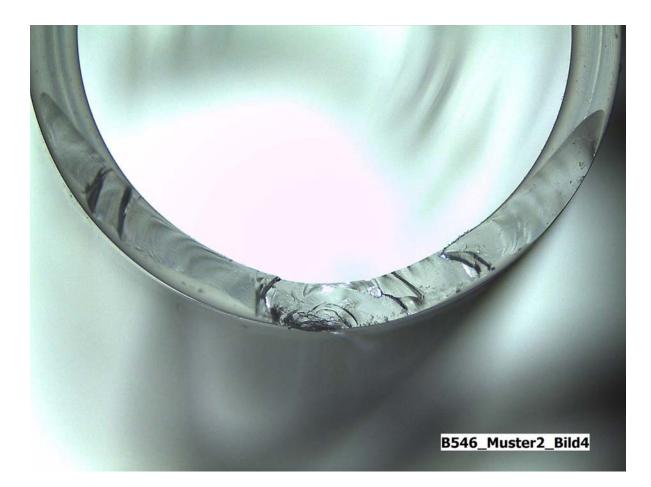


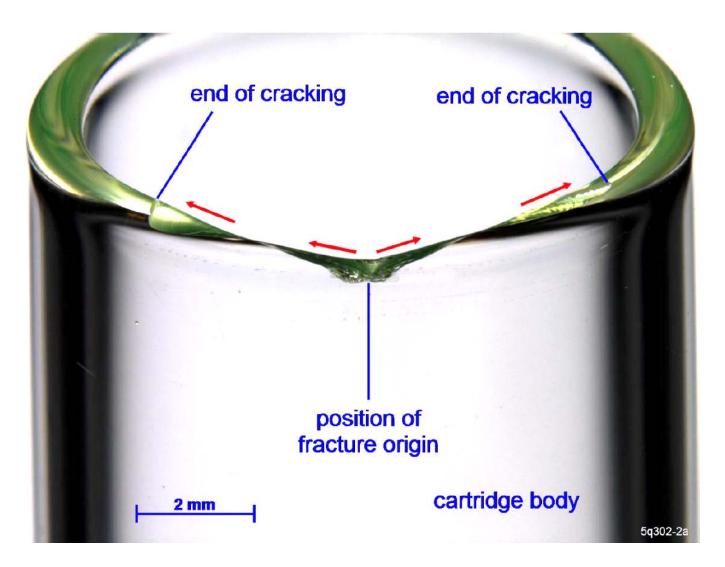


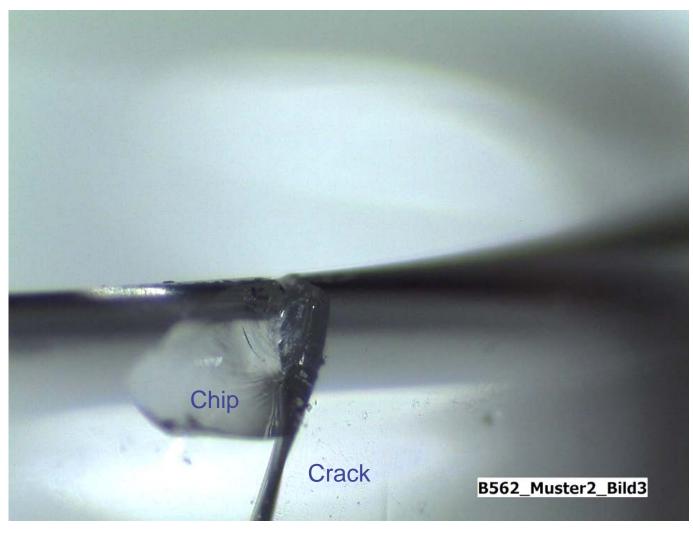

Description of Defect	Acceptable	Poor Quality
Deformed or damaged cartridges, function / processing NOT impacted		Molding ring slightly deformed

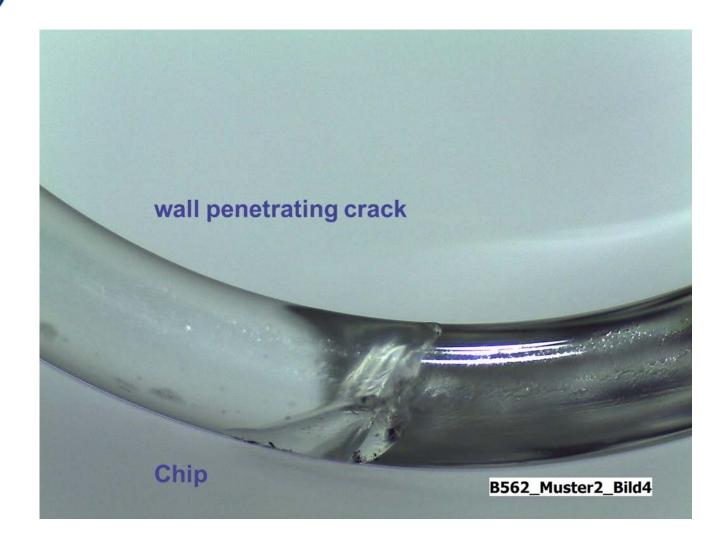

Description of Defect	Acceptable	Poor Quality
Deformed cartridge Container closure impacted		<image/>

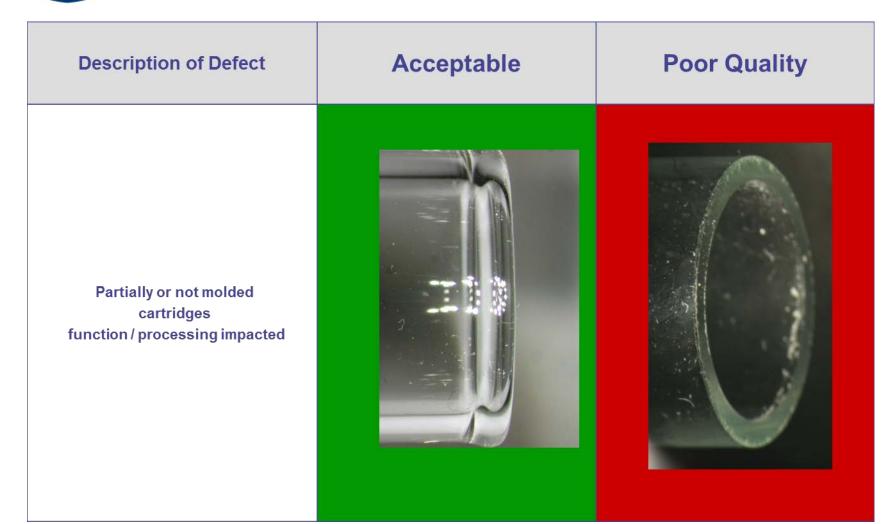


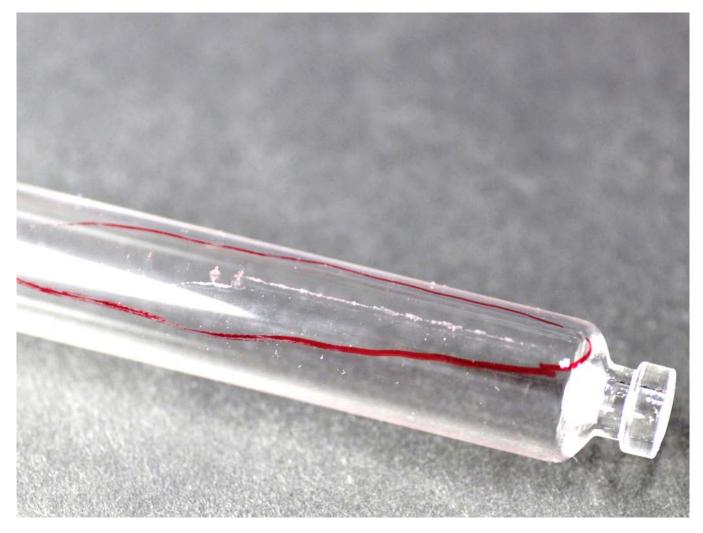






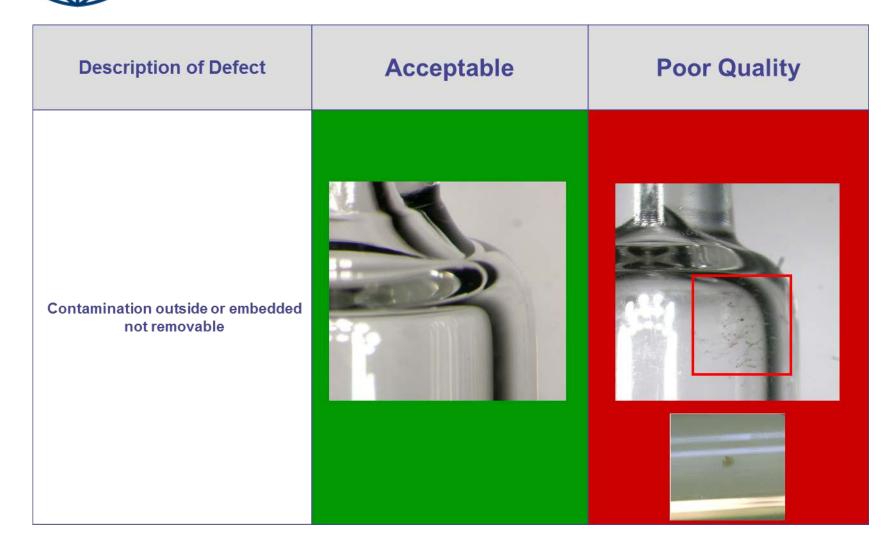




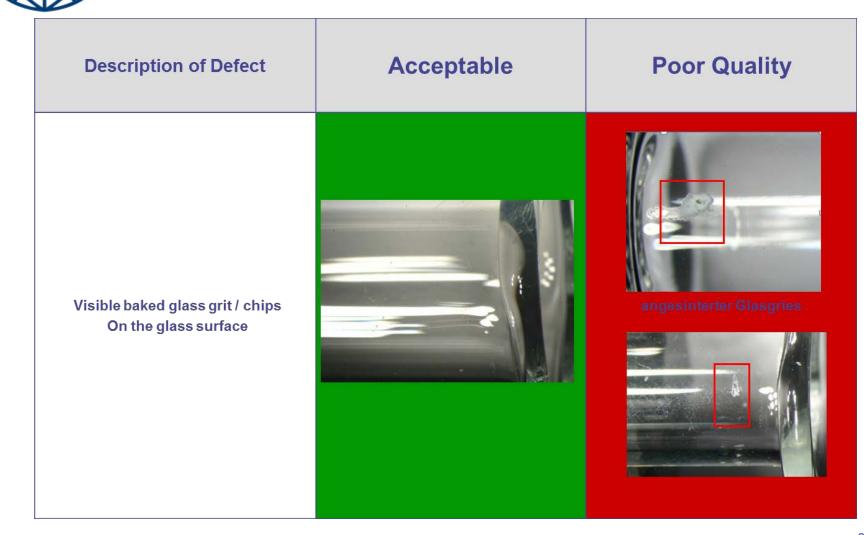


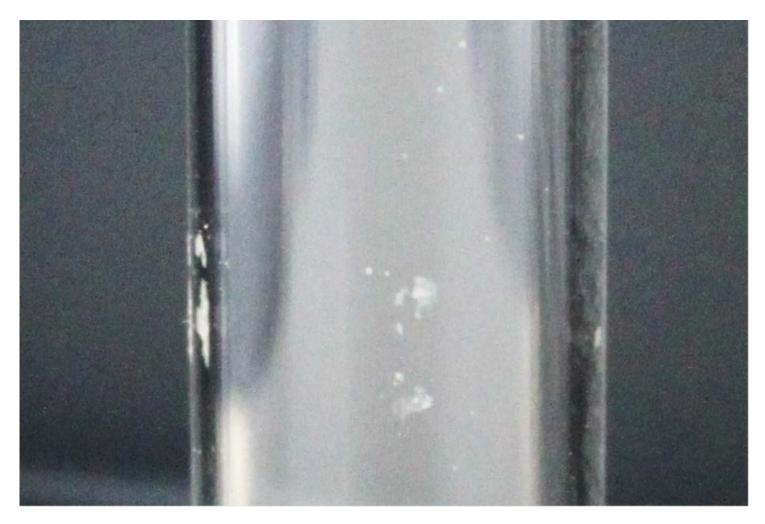
Description of Defect	Acceptable	Poor Quality
Closed air lines		

Description of Defect	Acceptable	Poor Quality
Airbubbles		

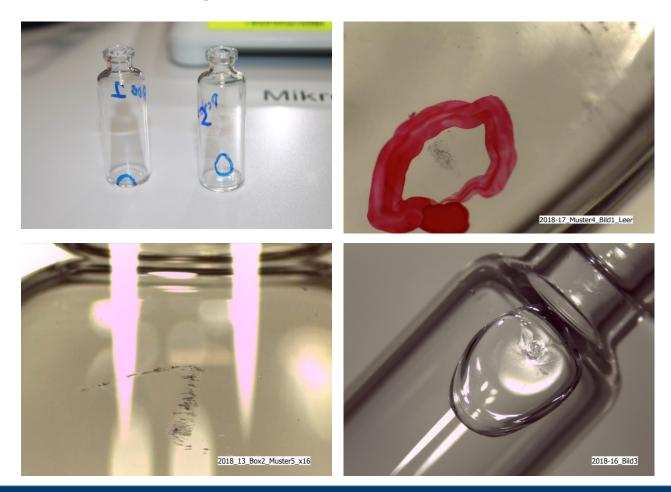


Description of Defect	Acceptable	Poor Quality
Contamination inside, not easy removable (not embedded)		<image/>





Description of Defect	Acceptable	Poor Quality	
Visible baked glass grit / chips On the glass surface			



Defects from filling operations

- Prerequisite for reduced testing

 ⇒ Quality History
 ⇒ Quality Management System
 ⇒ Supplier Certification
- Risk Analysis to evaluate potential impact
 ⇒ Reduction of individual test parameter
 ⇒ Supplier results disclosed on CoA
 ⇒ Determination of verification strategy (dynamic testing)
 ⇒ SKIP-Lot testing

SKIP-Lot Testing

- Not all incoming lots are inspected
- ISO 2859-3:2005: Sampling procedures for inspection by attributes - Part 3: Skip-lot sampling procedures (industrial standard)
- Identity testing for pharmaceutical products required
- Should only be used when it has been demonstrated that the quality of the product is very good

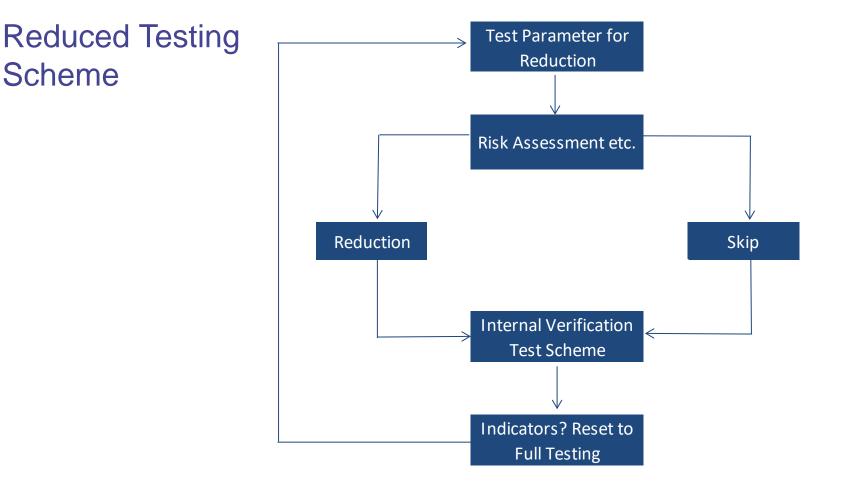
• EU GMP Guideline, Part I, Chapter 5

• Manufacturers of finished products are responsible for any testing of starting material as described in the marketing authorisation dossier

They can utilise partial or full test results from the approved starting material manufacturer but must, as a minimum, perform **identification testing** of each batch ...

- Requirements to be fullfilled when accepting test results from suppliers
 - Audits at appropriate intervals (sampling & testing)
 - CoA signed by a designated person (qualification)
 - History of compliance
 - Full analyses at appropiate intervals

Note: The same applies to packaging materials


US GMP Regulations – 21 CFR 211

⇒ Sec. 211.84 Testing and approval or rejection of components, drug product containers, and closures

(d) (3) Containers and closures shall be tested for conformity with all appropriate written specifications. In lieu of such testing by the manufacturer, a certificate of testing may be accepted from the supplier, provided that at least a visual identification is conducted on such containters/closures by the manufacturer, and provided that the manufacturer establishes the reliability of the supplier's test results through appropriate validation of the supplier's test results at appropriate intervals.

Reference samples

EU Guidelines to Good Manufacturing Practice, Volume 4 Annex 19

Reference and Retention Samples

Reference sample: a sample of a batch of starting material, <u>packaging</u> <u>material</u> or finished product which is stored for the purpose of being analysed should the need arise during the shelf life of the batch concerned.

 Each packaging site should keep reference samples of each batch of primary and printed packaging materials.

Risk of Delamination

- The phenomenon gained attention of pharmaceutical industry in 2010 as a result of products recalled from the market (vials).
- An advisory was published by the FDA informing drug manufacturers of the phenomenon and the conditions associated with elevated risk of delamination. http://www.fda.gov/drugs/drugsafety/ucm248490.htm
- Glass delamination is a serious concern for parenteral products. The phenomenon represents a chemical reaction that results in the release of tiny glass particles called "lamellae" into the product container. Not only does the occurrence of lamellae indicate a product stability issue, but may also present a risk to patient safety.

Conditions associated with formation of glass lamellae

- High Heat During Glass Vial Manufacturing
- High pH Corrosive buffer
- High Ionic Strength
- Longer Shelf-life
- Room Temperature Storage
- Terminal Sterilization

Delamination

Risk

		Risk factor
Primary Packaging (PP)	Type I without or Silicone	1
	Type II with treatment	10
	рН	
Product Formulation (PF)	Buffer (B)	
	Ionic Strength (IS)	
	Complexing Agent (CA)	
	pH = 7</td <td>1</td>	1
	pH > 7 & =8</td <td>5</td>	5
	pH > 8 or acetate, citrate, phosphate Buffer or IS >0,1M or CA	10
	Without terminal sterilization	1
Process (PR)	Terminal sterilization (1 cycle)	5
	Terminal sterilization (more than 1 cycle)	10
	PP x PF x PR	
Overall Risk Rating		

- 1 Requirements (from pharmacopoeias) regarding incoming inspection
- 2 How to do it in practice
- 3 What to consider or to avoid (examples)
- 4 Coordination process between packaging manufacturer and customer

- Pre-qualification (questionaire, information, due diligence visit)
- Negotiate contract(s)
- Supplier audit
- Agree upon specifications (sampling)
- Quality Agreement
 - Mandatory if data from CoAs are accepted for incomming inspection
 - Quality requirements should be discussed and agreed with the supplier. This may include production, testing and control, including handling, labelling, packaging and distribution requirements, complaints, recalls and rejection procedures

Ongoing Monitoring of Supplier

- Supplier relationship management
 - Classification
 - Assessment
 - Monitoring and Trend Performance
 - Complaint Management
 - Supplier Information
 - Shared Reviews

Supplier Management

- Specification Documents (contractual)
- Quality Agreements
- Supplier Audits
 - ISO 15378:2017 (en) Quality Management System for Medicinal Packaging Material Supplier

Specifies requirements for a quality management system for manufacturers of pharmaceutical and medical device primary packaging materials.

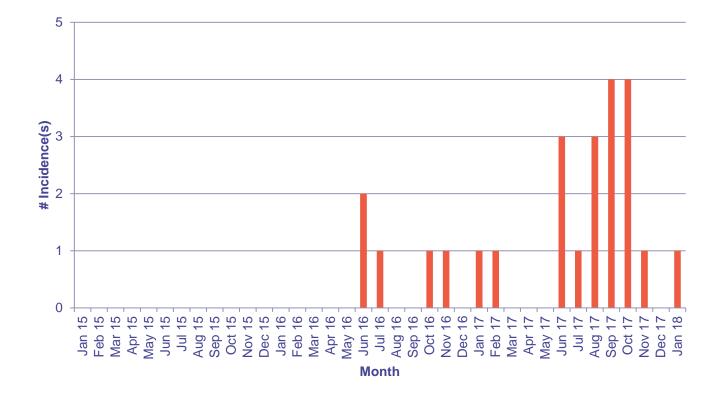
Manufacturers need to demonstrate their ability to consistently meet customer requirements, including regulatory requirements and international standards as applicable.


- The ISO 15378 standard enables the supplier to comply with legal requirements for pharmaceutical and medical device primary packaging materials
- The standard integrates the requirements of ISO 9001 as well as GMP prinziples, a regulatory requirement for the pharmaceutical and medical device industries as per all international regulations such as Code of Federal regulations (US), and European directives and regulations
- The standard also helps to reduce the risks of safety hazards and product contamination, and ensure product efficacy and shelf life.
- The standard delineates GMP principles and specifies Quality Management System requirements applicable to primary packaging materials.

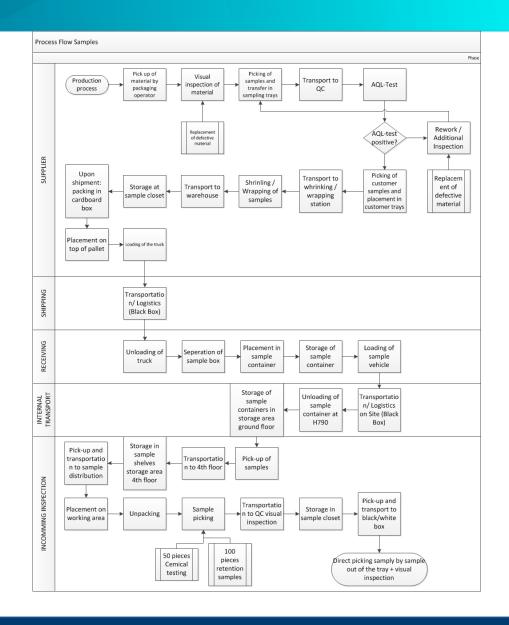
- Definition of defects
 - Can be quite subjective for visual parameter
 - Expected quality might be higher than described in the defect lists
 - Some imperfections are process intrinsic
 - Other factors that may influence acceptance level, e.g. product delivery market e.g. Japan

- Limit Sample (optional)
 - Physical unit that is agreed between manufacturer and customer that defines the maximum degree of acceptability of an imperfection
 - Subjective Defect
 - Objective Defect

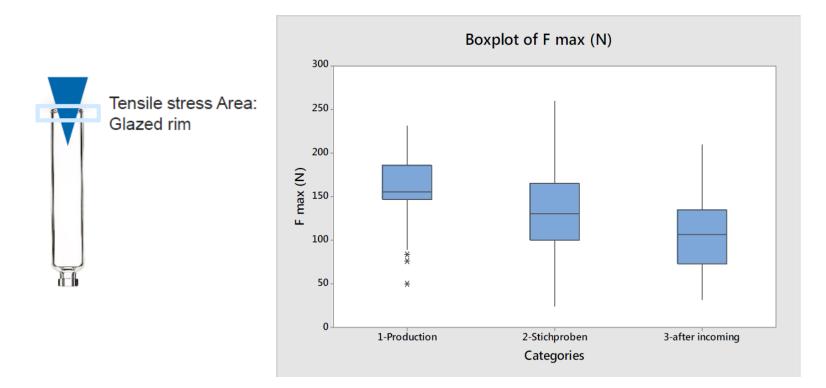
- Supplier
 - In-process control: inspection during processing
 - Final inspection: inspection of finished product
 - Reference Samples
- Pharmaceutical Manufacturer
 - Receiving inspection: Inspection for quality-determining parameters and/or the manufacturer's (supplier) certificate before processing
 - Documentation: recording of inspection data in suitable achives
 - Reference Samples


Glass chippings at the glazing end

Incidences during incoming inspection

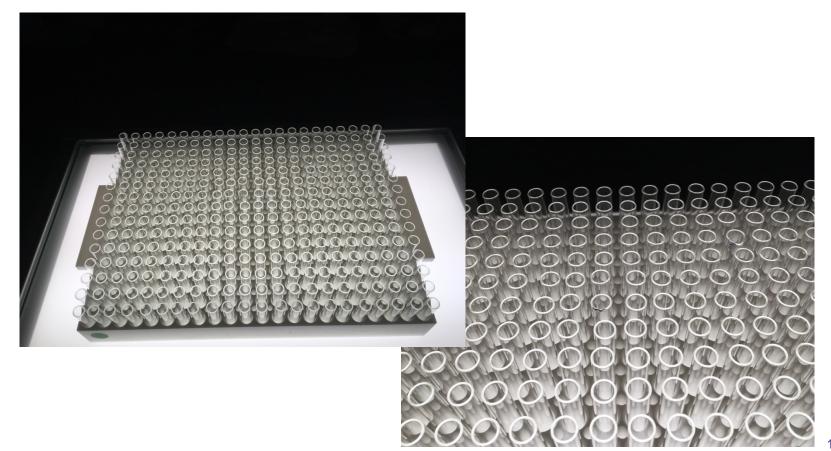

Re-inspection results of selected batches

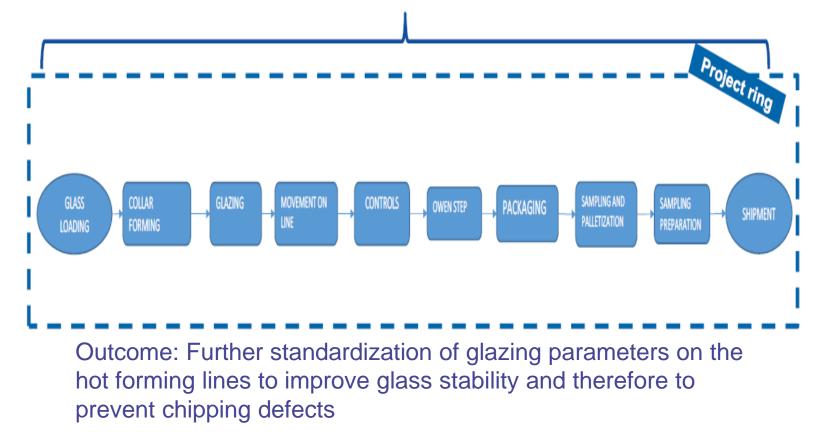
Batch	Defect Rate Tailgate	Sorted units	Defect Rate after sorting
А	1.5%	> 900,000	0.001 %
В	1.2 %	> 900,000	0.002 %
С	0.48 %	> 90,000	0 %


Incoming Inspection of Primary Packaging Material

 Shared Investigation: Processing of Tailgate Samples vs. Material Batches

Investigation of glass stability pre-/ post-shippment





121

- Single root cause could not be identified
- Several contributing factors have been identified and related improvements implemented at both parties
- Since implementation of the related CAPAs no further batches have been rejected
- Partnership with supplier is an important factor for resolution of this type of issues

Thank You!

Connecting People, Science and Regulation®

- EudraLex Volume 4 Good Manufacturing Practice (GMP) guidelines
 - Part I, Chapter 1: Pharmaceutical Quality System
 - Part I, Chapter 4: Documentation
 - Part I, Chapter 5: Production
 - Annex 8: Sampling of Starting and Packaging Materials
 - Annex 19: Reference and Retention Samples
- Code of Federal Regulations 21 CFR 211
 - Section 211.80 General requirements
 - Section 211.84 Testing and approval or rejection of components, drug product containers and closures
- ISO 15378:2017 Primary packaging materials for medicinal products -- Particular requirements for the application of ISO 9001:2015, with reference to good manufacturing practice (GMP)
- DIN ISO 2859 Sampling Procedures for Inspection by Attributes, -3 Skip Lot Testing
- DIN ISO 13926 Pen Systems part 1: Glass Cylinders for Pen-Injectors for Medical Use
- PDA Technical Report-43 Revised: Identification and Classification of Nonconformities in Molded and Tubular Glass Containers, for Pharmaceutical Manufacturers, 2013
- Principles for the Defect Evaluation Lists for Packaging Material, Edito Cantor Verlag fur Medizin und Naturwissenschaften GmbH, 5th Edition 2017

References Pharmacopeias

- Glass Testing Procedures
 - USP/NF Section <660> Type I Highly Resistant Borosilicate Glass
 - Ph. Eur. 3.2.1 Glass Containers for Pharmaceutical Use
 - Japanese Pharmacopeia 7.01 Test for Glass Containers for Injections
- Endotoxin- / Bioburden- Testing
 - Endotoxin LAL-Test (according to Ph. Eur. 2.6.14; USP <85>, JP)
 - Bioburden (according to Ph. Eur. 2.6.1; USP <71>, JP)
- Visible Particles
 - Ph. Eur Method 2.9.20 Particulate Contamination, Visible Particles