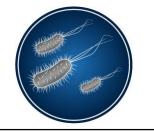
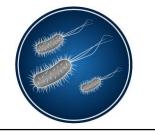


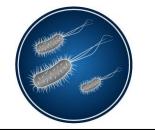
Evaluation, Validation and Implementation of Alternative and Rapid Microbiological Methods


Cellular Component-based Technologies

Michael J. Miller, Ph.D.

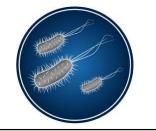

MICROBIOLO

CONSULTAN

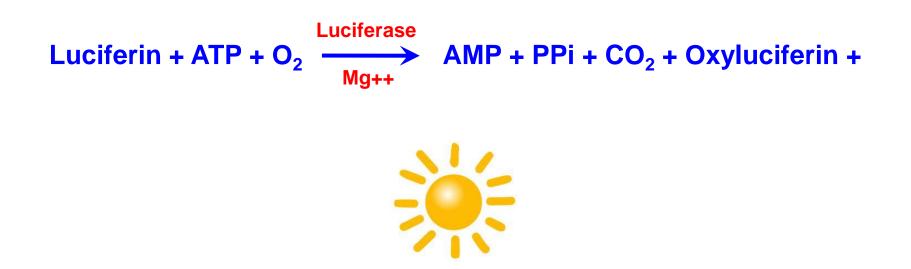

Cellular Component-based Technologies

- Rely on the analysis of cellular components or the use of probes that are specific for microbial target sites of interest
 - ATP
 - Fatty acids in cell membranes
 - Surface macromolecules
 - Bacterial endotoxin
 - Proteins
 - Nucleic acids

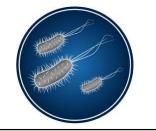
Scientific Principles


- ATP Bioluminescence
- Endotoxin Detection
- Fatty Acid Profiling
- Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) Mass Spectrometry
- Surface Enhanced Laser Desorption Ionization Time of Flight (SELDI-TOF) Mass Spectrometry
- Fourier Transform-Infrared (FT-IR) Spectrometry

ATP Bioluminescence


- Bioluminescence is the generation of light by a biological process
- 1947: William McElroy discovered the mechanism by which bioluminescence occurs
- Observed in the tails of the American firefly *Photinus pyralis*
- Specific enzyme reaction catalyzing the consumption of ATP (Adenosine Triphosphate)

ATP Bioluminescence


 In the presence of the substrate luciferin, the enzyme luciferase will use the energy from ATP to oxidize luciferin and produce photons (hv; light at a wavelength of 562nm)

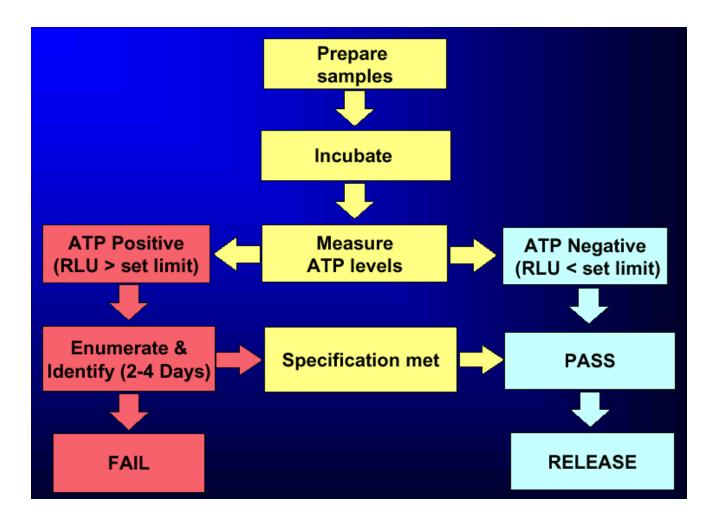
ATP Bioluminescence

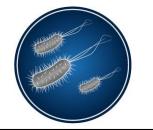
- Because all living cells store energy in the form of ATP, it can be used as a measure of organism viability
- Capture microorganisms, release ATP from within the cells, and measure the amount of bioluminescence generated
- Instruments utilize a luminometer equipped with a photomultiplier tube to detect the photons

- The concentration of ATP required for measurement is about 200 attomoles, which is equivalent to one yeast or mold cell or approximately 100 bacterial cells, depending on their metabolic state.
 - May require up to 1000 bacterial cells
- When low numbers of cells are expected, an enrichment step in media is required to allow the cells to multiply and produce a sufficient level ATP for detection

Pall Pallchek

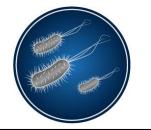
- No longer sold by Pall Corporation
- Enrich sample (e.g., 18 h) on media to allow growth of bacteria
- Add luciferin and luciferase
- Results were provided as relative light units (RLU)
- It is worthwhile presenting a case study on this technology as this can be used for similar systems



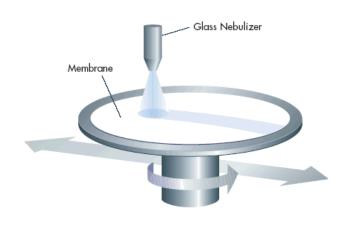


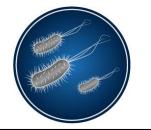
- GSK received FDA approval to use the Pallchek system for the early release of a non-sterile prescription nasal spray product (up to four days earlier than conventional methods)
- They were the first pharmaceutical company to obtain an approval under the FDA PAT initiative
- The firm used a comparability protocol and implemented the technology under a CBE-0
- Filtered the product, enriched overnight and tested the filter
- They used a 2-tiered approach to product release

Case Study



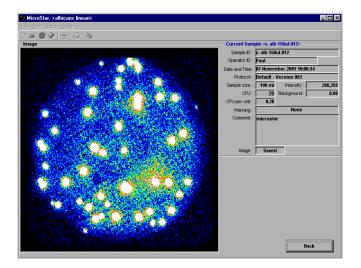
Millipore Milliflex Rapid Microbiology Detection System


- Utilizes a filter membrane to capture individual cells, allow them to grow into micro-colonies and provide an actual cell count
- Pass sample through 0.45 micron PVDF membrane
- Can rinse filter to reduce bioluminescence inhibition or interference



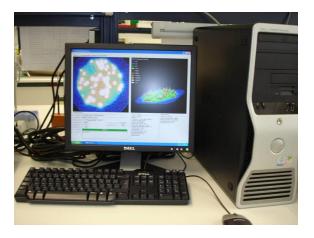
Millipore Milliflex Rapid Microbiology Detection System

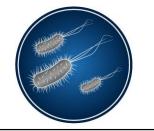
- For bacterial detection, incubate on appropriate medium to form micro-colonies (e.g., 18 hrs)
 - Growth is not required for yeast or vegetative mold
- The filter is then placed into the AutoSpray station, where ATP releasing agent and bioluminescence reagents are applied

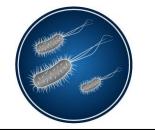


Millipore Milliflex Rapid Microbiology Detection System

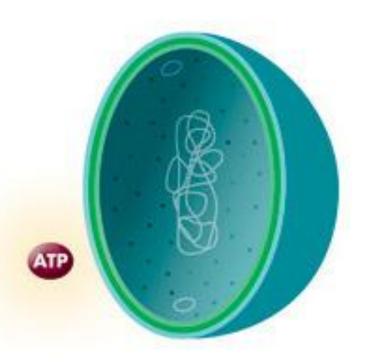
- The filter is then transferred to the Detection Tower
 - The detection tower intensifies bioluminescence from each cell (or micro-colony) thousands of times
 - CCD camera sees signal, image processor provides cell count
 - Each image theoretically arises from a single cell
 - May be non-destructive (continue to grow micro-colonies)

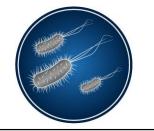



- In 2010, Novartis received FDA, EMA and MHRA approval to use the Milliflex Rapid system as an alternative to the compendial sterility test
- Reduces the 14 day sterility test to 5 days
- Same filtration volumes and rinse fluids as compendial test, then uses agar media for growth of micro-colonies


- They conducted extensive testing to determine the most optimal growth medium and incubation parameters where micro-colonies can develop
 - Modified Schaedler blood agar (Rapid Sterility Test Medium)
 - Aerobically at 20-25° C, aerobically at 30-35° C and anaerobically at 30-35° C in an anaerobic jar
 - Stressed organisms (heat, UV, exposure to preserved product)
- Incubation time has been validated at 5 days
 - The time required to detect a "worst-case, slow growing microorganism" (*Propionibacterium acnes*), plus additional time to account for variability and testing in the laboratory

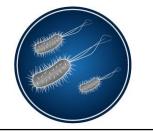
Celsis/Charles River Labs Advance II System


- Same ATP detection principle as previously discussed
- Celsis RapiScreen reagents contain luciferin and luciferase
- Measures Relative Light Units (RLU)

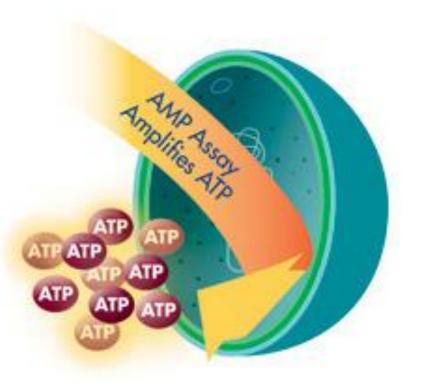


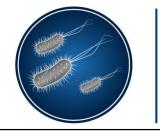
Celsis/Charles River Labs Advance System

- ATP bioluminescence is limited by the fact that an organism can contain only a finite amount of ATP
- An average bacterial cell contains 1 attomole of ATP
- Celsis developed a method to amplify the amount of ATP generated in the cell

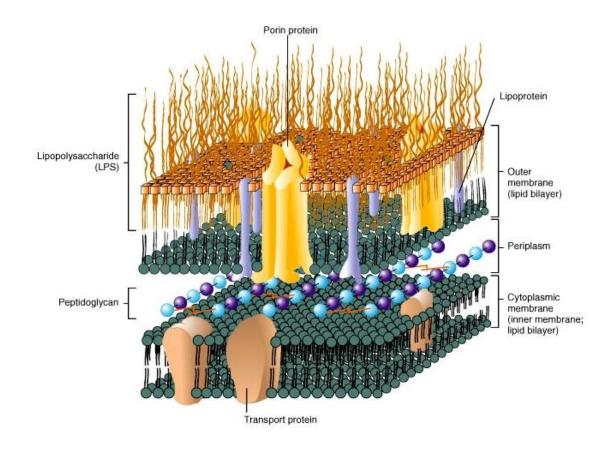


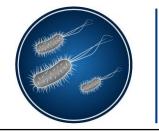
Celsis/Charles River Labs Advance System


- All living organisms also contain adenylate kinase (AK), another vital part of energy metabolism
- Because AK is an enzyme, rather than a metabolite, it is possible to use AK to generate almost unlimited amounts of its products
- AK catalyzes the linear amplification of ADP to high levels of ATP:



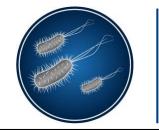
Celsis/Charles River Labs Advance System


- Extract AK and ATP from the cells
- Add Celsis AMPiScreen reagent, which contains ADP
- Add luciferin and luciferase
- The resulting reaction produces a 1000-fold increase in ATP
- This procedure is being used to detect growth during a sterility test after a 7-day incubation period in media

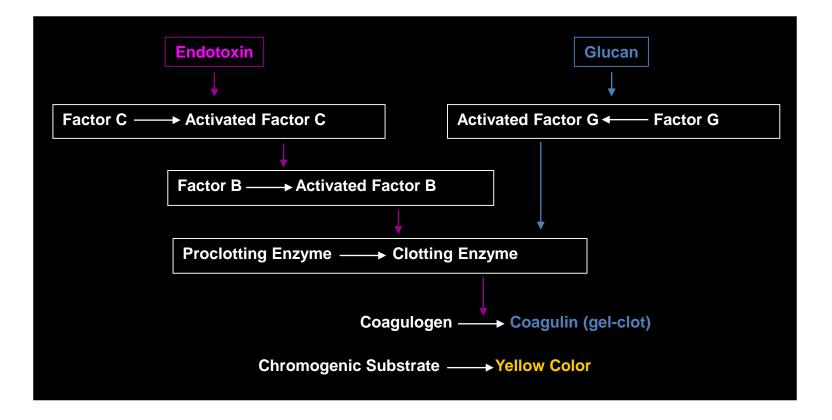


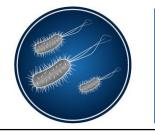
Rapid Detection of Endotoxin

Lipopolysaccharide from Gram-negative bacteria

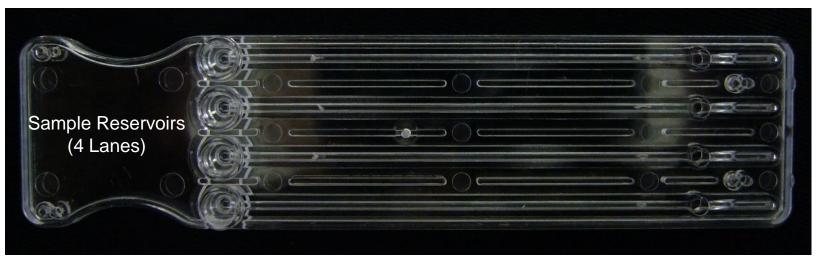


Rapid Detection of Endotoxin

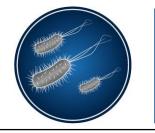

 The most widely used methods employ Limulus Amebocyte Lysate (LAL), which is isolated from the blood of the horseshoe crab (Limulus polyphemus)



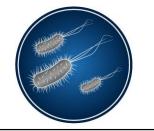

Rapid Detection of Endotoxin



- Endotoxin testing using LAL
- Rapid (15-20 minutes), point-of-use using a disposable cartridge and hand-held, touch screen incubating spectrophotometer
- Quantitative kinetic chromogenic method by measuring color intensity directly related to the endotoxin concentration in a sample


 Each cartridge contains LAL reagent, chromogenic substrate and control standard endotoxin (CSE; midpoint within cartridge range)

Endotoxin SpikesLAL ReagentChromogenicOptical(Lanes 3-4)SubstrateWells

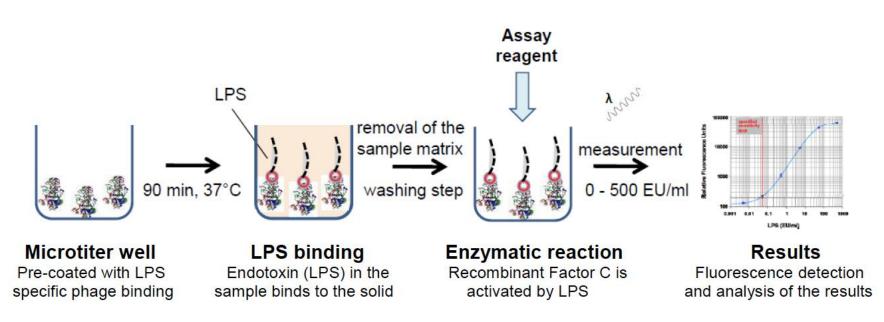

- Add 25 µL of sample into each of the four channels of the cartridge
- The reader draws and mixes the sample with the LAL reagent in two Sample Channels, then with the LAL reagent and positive product control in the Spike Channels
- Sample is incubated and combined with chromogenic substrate
- After mixing, the optical density of the wells are measured and analyzed against an internallyarchived standard curve

- Test results appear on the screen
- Sensitivity includes
 0.01-1.0 and 0.05 5.0 EU per mL
- FDA-approved as an alternative to traditional LAL testing methods for final product release

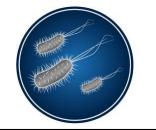
Version:	: Experimental 0.9
	• • • • • • • • • • • • • • • • • • • •
Date / Time:	8/25/15 2:57 PM
Device:	w2515008075
Operator ID:	
Cartridge:	Endotoxin
Temperature:	Start: 37.0C End: 37.0C
Method:	KX-122
Cartridge Lot#:	5146152
Cartridge Cal Code:	511532565565
Range:	5-0.05
Range Time:	Sec: 115-725
Onset Time(s):	> 725 266 > 725 252
Dilution:	1
Sample Lot:	99732359
Sample ID:	LRW
Sample Reaction Time CV:	0.0% Pass
Spike Value:	0.606 EU/mL
Spike Reaction Time CV:	3.8% Pass
Spike Recovery:	81% Pass
Test Suitability:	Pass
Sample Value:	<0.050 EU/mL

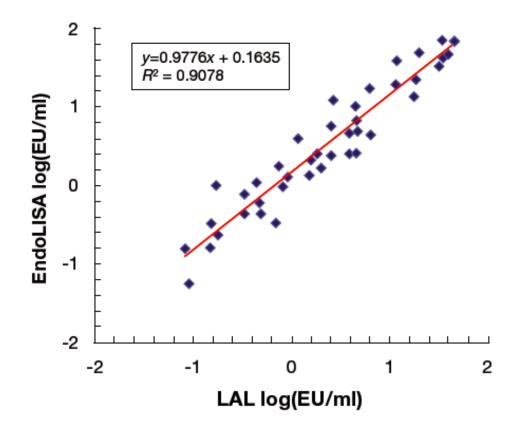
Hyglos EndoLISA

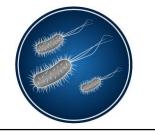
- Uses a phage binding protein for endotoxin detection
- Correlates with kinetic, chromogenic LAL test
- 0.05 500 EU/mL sensitivity
- Time to result is ~ 3 hours
- Uses recombinant Factor C



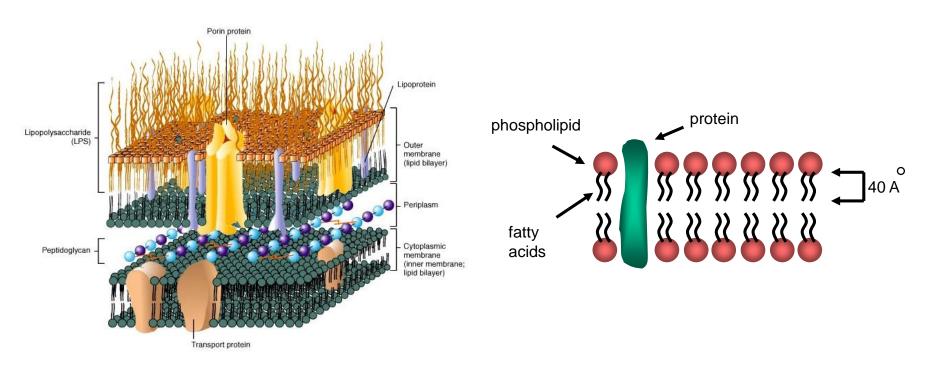
Hyglos EndoLISA

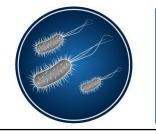

- Microplate is pre-coated with a phage-derived receptor protein that has a high affinity and specificity for the conserved core region of LPS
- 100 µl of the sample is added to a microplate well
- After LPS binding, the adhered sample matrix is washed to remove potential interfering substances
 - Salts
 - Buffers with extreme pH conditions (pH 4-9)
 - Detergents
 - Antibiotics
- LPS is detected using recombinant Factor C and a fluorescent substrate


Hyglos EndoLISA



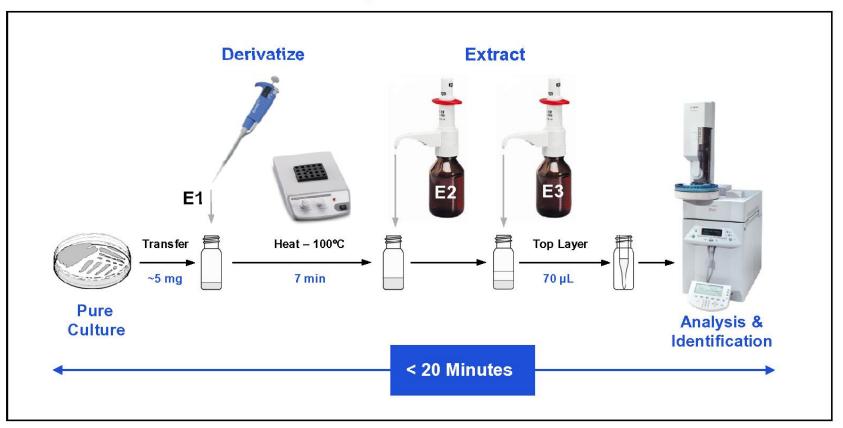
- 90 min binding step in microplate
- Wash 3X
- Add assay reagent, incubate at 37° C for 90 min, detect LPS in a fluorescence reader

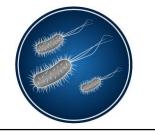

 Recombinant Factor C correlates with LAL assay using E. Coli, Salmonella and Pseudomonas



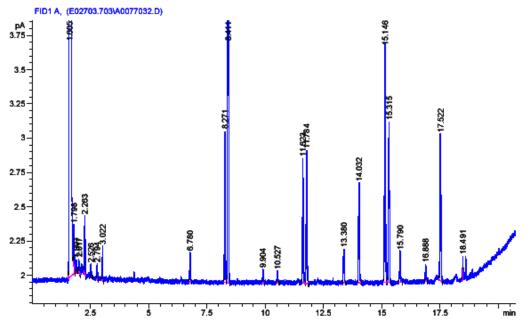
Fatty Acid Analysis

- The cellular membrane contains lipid biopolymers
- Fatty acid profiles provide a fingerprint for microorganism identification


Sherlock MIDI System

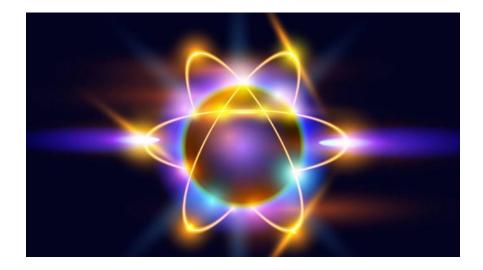

- Fatty acids from microorganisms are extracted and used to provide a gas chromatographic profile that can be compared with an internal database
- A loopful of organisms from an isolated colony are lysed to release fatty acids from cellular lipids; fatty acids are processed and placed in a gas chromatography instrument

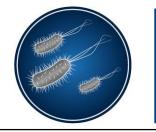
Sherlock MIDI System


E-FAME™ Rapid Bacterial ID Method

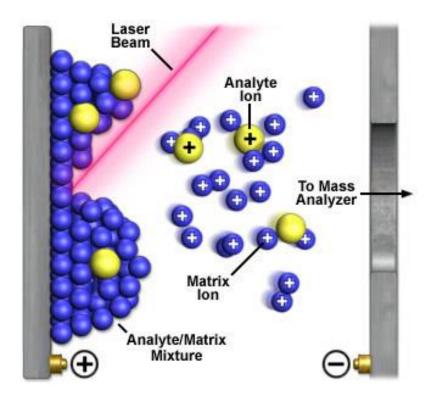


Sherlock MIDI System


- Each peak corresponds to a specific fatty acid
- Compare fatty acid profile to an internal database to identify more than 1200 bacteria and 200 fungi (yeast and mold)

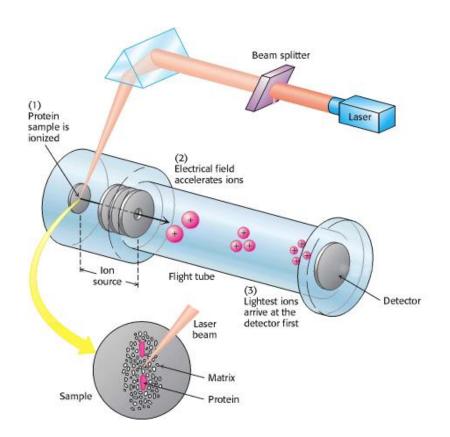


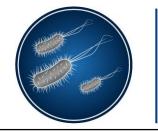
MALDI TOF Mass Spectrometry

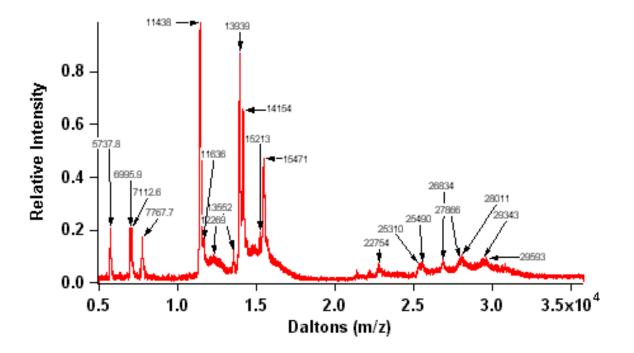

- Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry
- Accurate molecular weight measurement (and characterization) of biomolecules, including proteins, peptides, polysaccharides and nucleic acids

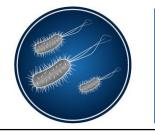


MALDI TOF Mass Spectrometry

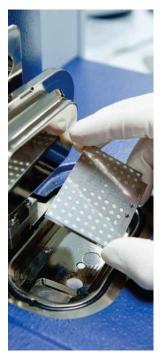

- A biomolecule is combined with a UV-absorbing matrix and ionized by a laser
- The laser energy is absorbed by the matrix, preventing unwanted fragmentation of the biomolecule



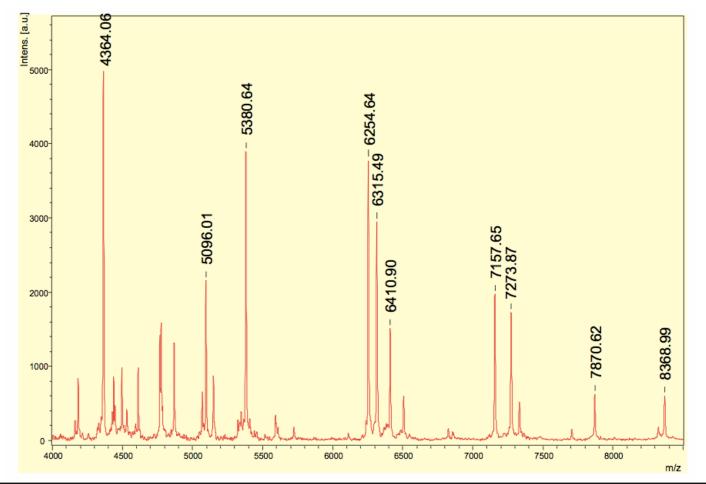

MALDI TOF Mass Spectrometry

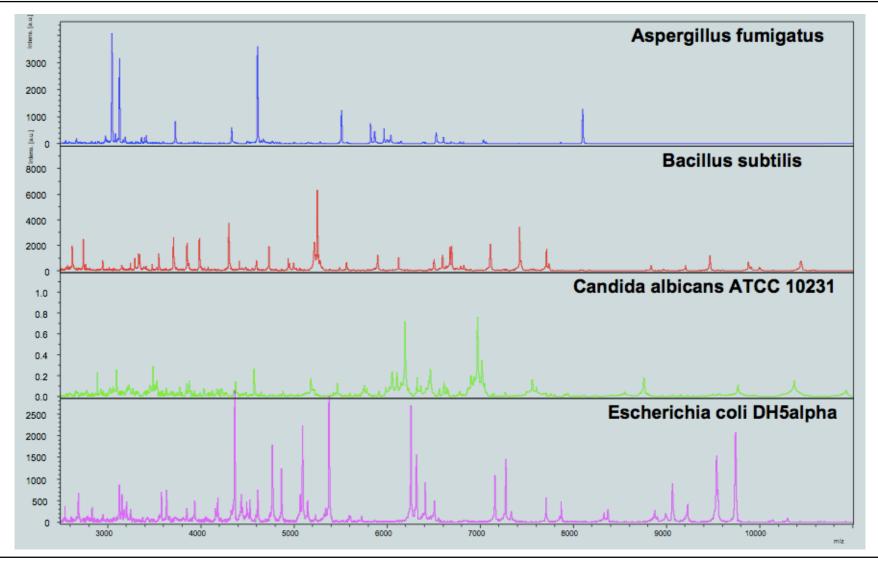

- The ionized particles are then accelerated in an electric field and enter the flight tube
- Different molecules are separated according to their mass to charge ratio and reach the detector at different times

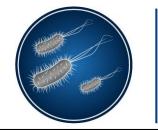
- A mass spectrum is generated within seconds
- Mass spectra can be used for microbial identification


- No need for pre-screening (Gram staining)
- Applicable for bacteria, yeast, mold and Mycobacteria
- Detects proteins and peptides
- Need minimum of 10⁵ cells for accurate measurement

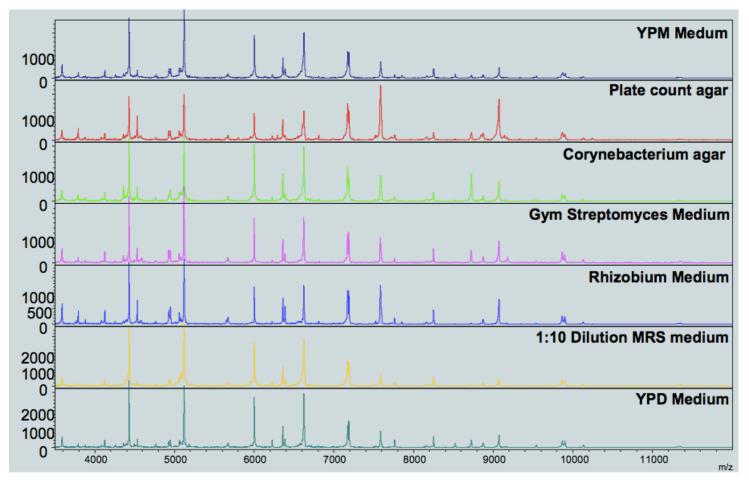


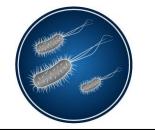

- Intact cells from a pure culture are added to a stainless steel target plate and allowed to co-crystallize with the UV-absorbing matrix
- After drying, the target plate is placed into the mass spectrometer, and exposed to a laser
- Ionized proteins and peptides are arranged in a spectrum with increasing mass (between 2-20 kDa)
- Mass spectra are compared with an internal database
- >4,600 spectra; >2,000 species





• Spectrum of *E. coli* (mass of ribosomal proteins highlighted)





• Pseudomonas oleovorans grown on different media

bioMérieux Vitek MS

- MALDI-TOF mass spec
- >25,000 spectra for clinicallyrelevant microorganisms

