

Sublimation

Georg Frinke - Process Engineer Volunteer for PDA

Overview

- Theory of Sublimation
- Practical aspects of Suplimation
- PAT
- Recipe & Transfer Parameters
- Hands-On: Barometric / Manometric Temperature Measurement

Theory of Sublimation

General Equation for Heat Transfer

$$\frac{dQ_{Cond}}{dQ_{Conv}} + \frac{dQ_{Rad}}{dQ_{Conv}} + \frac{dQ_{Conv}}{dQ_{Conv}} = dQ_{comp}$$

$$\frac{dQ_{comp}}{dt} = k_V \cdot A_H \cdot [T_{Siliconeoil} - T_{Product}]$$

- k_v Very simplified Heat Transfer Coefficient
- A_H Vial Bottom Area
- T_{Product} Product at the Sublimation front

Sublimation – Thermic & Pressure profile

- Frozen water evaporates
- Process requires high energy supply
- Steady conditions are recommended

Heat Flux is stationary

• Each step of energy transfer transfers same amount of energy

• Temperature difference and thermal resistance are proportional

• Temperature gradient in vial is changing during sublimation

$$\frac{1}{K_{V}} = \sum_{i=1}^{i} \left[\frac{1}{K_{i}}\right] \Leftrightarrow K_{V} = \frac{1}{\sum_{i=1}^{i} \left[\frac{1}{K_{i}}\right]}$$

Partial Heat Transfer	Coefficient [W / m² K]
Silicone Oil => Shelf Surface	40250
Shelf Surface => Vial Bottom	820
Vial Bottom => Sublimation Front	1001000

PDA Prentaral Drug Association

Connecting People, Science and Regulation ®

Theory of Sublimation

Comparison of liquid and gazeous volume of same mass

General Equation for Mass and Heat balance of the vial

Sublimation at the front

- Heat intake equilibrates with heat consumption by ice sublimation
- Driving force for mass flow is pressure difference
- Driving force for heat flux is temperature difference

$$\frac{dm}{dt} = \frac{A_{P}}{R_{PS}} \cdot (P_{i} - P_{C}) = \frac{dQ_{subl}}{h_{subl}}$$

Impact of different Heat intake on Homogeneity

Vialtype:	10ml Vial
Filling:	5ml
Layer:	8mm
T _{Sh} :	0°C
T _{Rad} :	0°C
p _{ch} :	80µbar
t _{End} :	8h
m _{min} :	1,88g; 0,24g/h
m _{max} :	3,64g; 0,45g/h
Base:	3 runs aver.

Equilibrium of T_{Ice}

Limitations of Heat supply

- Heat transfer coefficient in the shelf
- Heat transfer coefficient between shelf surface and sublimation front
- Difference between T_{Ice} and T_{Silicone oil}

Limitations of Sublimation Rate

- Cooling capacity of ice condenser
- Flow resistance of Freeze Dryer
- Vapor transport in product

Course of Freeze Drying at FD-Microscope (Bookcover, Oetjen/Haseley)

Theory of Sublimation

Sublimation progress

• 90s

• 180s

• 270s

• 360s

At the end of sublimation all ice is removed

<u>Questions?</u>

Practical Aspects of Sublimation

Sublimation phase – Hints for a first run (I)

When process vacuum is reached the shelves should be heated up... ...Sublimation starts

• As shown before, the temperature at the sublimation front (T_{ice}) depends on the equilibrium of shelf temperature and chamber vacuum

 $\bullet\ T_{ice}$ must never exceed the critical temperature investigated with one of the previously described instruments

• A proper process vacuum could be the vapor pressure of $(T_{crit} - 5...10^{\circ}C)$

Sublimation phase – Hints for a first run (II)

When process vacuum is reached the shelves should be heated up... ...Sublimation starts

• A first estimation for step duration could be calculated based on sublimation progress of 0,5mm_{Laver}/hour

• Due to variations in Drying Progress over time, changes in Shelf Temperature or Process Vacuum during Sublimation should be avoided

- For a first guess, a conservative Temperature difference between $t_{\rm crit}$ and $t_{\rm shelf}$ of 15°C can be assumed

Optimization of Sublimation phase (I)

- Every raise of T_{ice} by +1°C increases process speed by 10...15%
- Frequently performed Pressure Rise Analysis enable safe monitoring of right $\mathrm{T}_{\mathrm{ice}}$
- The average T_{ice} can be also calculated based on TDLAS results

Optimization of Sublimation phase (II)

- The use of PAT Tools allows the safe control of the right step time
- The ice is safely removed, when
 - 1. the Temperature probes are above the shelf temperature (requires time margin and right positioning of the temperature sensors)
 - 2. T_{ice} has reached the equivalent vapor temperature of the chamber vacuum
 - 3. the Pirani Vacuum converges to the capacitive vacuum closer than 5%
 - 4. the indicated Lyotrack value has reduced below 0,4
 - 5. the Sublimation Rate has reduced to some percents of its maximum value

Practical Aspects Sublimation

Sublimation phase

Practical Aspects Sublimation

Sublimation phase

Temperature Measurement during Sublimation phase

Procedure	Temp. Probes	Manometric / Barometric Temperature measurement	Temperature Calculation by TDLAS
Aseptic Handling	If wireless	yes	yes
Process impact	no	Yes	no
Main Valve close time	No process impact, always open	325s	No process impact, always open
Measuring scope	Indefinable position at vial	Full load	Full load
Other Considerations	Monitoring of some Samples only, Comparability of Samples with Cycle	Detects always the most critical vials in the process	Calculates the general average of t _{ice}

PAT

PAT

23

PAT @ Sublimation:

Process Feedback for Sublimation

- Ice Temperature (Frozen Product / sublimation Front)
 - Conventional Sensors (PT100 / TC / Wireless)
 - Barometric / Manometric Temperature Detection

PAT @ Sublimation:

Process Feedback for Sublimation

- Vapor Flow into Condensor
 - TDLAS
 - Analysis of Pressure Rise Measurement e.g. the frequent measurement of Sublimation / Evaporation Rate

$$\mathsf{ER} = \frac{\frac{\Delta p}{[\mu \text{bar}]}}{\frac{\Delta t}{[s]}} \cdot \frac{\frac{V_c}{[m^3]}}{\frac{\vartheta_s}{[K]}} \cdot \frac{1}{\frac{m_{\text{Tr}}}{[kg]}} \cdot 0,7803 = \left[\frac{1}{h}\right]$$

PAT

PAT @ Sublimation:

Further Process Feedback for

Sublimation

- Vapor Concentration
 - Comparative Pressure Measurement
 - Cold Plasma
 - NIR Gas Analysis
 - MS Gas Analysis
 - Dew Point Detection
 - Inert Gas Flow Monitoring

PAT @ Sublimation:

Process Feedback for Sublimation

- Ice Loss of Load
 - (Micro) Balance at Product Area
 - Sample Thief with Balance
- Ice Increase at Condenser
 - Weighing Function at the Ice Condenser
 - Thickness indication of Ice Layer
- Structural change of Product (Nucleation Sensors)

Recipe & Transfer Parameters

Investigation of the sublimation process

• A freeze Drying Microscope allows a detailed analysis of the drying process and a proper assessment for the suitability of the porosity of the frozen structure.

• The Correlation of the Evaporation Rate with the Water/Ice content allows a safe prediction of the End of Primary Drying

• The profile of T_{lce} vs. Progress can be considered as transfer Parameter. As long this profile is likewise at different Lyos, the processes can be considered as comparable.

Principles for Sublimation

Procedure	Principle	Result				
BTM / MTM product parameter	Indirect calculation of T _{Ice} by Pressure Rise Analysis	Direct control of temperature at sublimation front				
Gas Flow	Indirect calculation of	Determination of end				
process	sublimation rate by	point of sublimation				
parameter	detecting vapor velocity	phase				
Gas Moisture	Direct measurement of	Determination of end				
process	partial vapor	point of sublimation				
parameter	concentration	phase				

PAT

Some Questions of mine :

- \checkmark meaning of K_v?
- ✓ Volume per kg Ice (80µbar, -44°C)?
- ✓ Increase of process speed by raise of T_{ice} +1°C?
- ✓ Difference between $T_{shelf} \& T_{ice}$?
- ✓ Difference between T_{shelf} & T_{silicone oil}?
- ✓ "Comparative Pressure measurement"?
- ✓ Indicators for end point of sublimation?

Hands-on:

Barometric / Manometric Temperature Measurement

Theory of Barometric Temperature Measurement (BTM)

Pressure profile is driving force of lyophilization

Pressure at sublimation front,

Theory of Barometric Temperature Measurement (BTM)

Theory of Barometric / Manometric Temperature Measurement (BTM / MTM)

- Pressure equalizes at equilibrium point
- Further pressure rise is result of steady warming of the whole batch => Risk of product melt
- Equilibrium point and pressure rise characteristic changes with sublimation progress

Theory of Barometric Temperature Measurement (BTM)

• Procedure is sensitive against low number of remaining vials

• A change of shelf temperature for cycle tuning is not recommendable => process inhomogeneity

• The numeric fit-procedure allows the calculation of the results with MS-Excel

Theory of Barometric Temperature Measurement (BTM)

F	$P_{(t)} = P_{lce} - (P_{lce} - I)$	$P_0) \cdot e^{-t \cdot \frac{N \cdot A_p \cdot 62, 3 \cdot T'}{18 \cdot V \cdot R_p \cdot 3600}} + 0,0468$	$5 \cdot P_{lce} \cdot \left(\frac{24,7 \cdot L_{lce} \cdot (P_{lce} - P_{0})}{R_{p}} - 0,0102 \cdot L_{lce} \cdot \frac{\left(T' - \frac{6144,96}{24,01849 - \ln(R_{lce})} + \frac{1-0,0102 \cdot L_{lce}}{1-0,0102 \cdot L_{lce}}\right)}{R_{p}}\right)$	$\overline{\underline{\mathbf{P}}_{lce})}\right) \\ \left(1 - 0.811 \cdot e^{\left(-0.114 \cdot \frac{t}{L_{lce}}\right)}\right) + EX \cdot t$
	Symbol	Unit	Description	
	P _(t)	[Torr]	Chamber pressure	Measured
	P _{lce}	[Torr]	Vapor pressure at sublimation front	To be solved
	_			

P _{Ice}	[Torr]	Vapor pressure at sublimation front	To be solved
P ₀	[Torr]	Chamber pressure at start of BTM	Measured
Ν	[]	Number of vials	To be known
A _p	[cm ²]	Average surface of the vial	To be known
T'	[K]	Shelf temperature	Measured
V	[1]	Effective chamber Volume	To be known
R _p		Flow resistance of dried cake	To be solved
L _{Ice}	[cm]	Filling level, Layer thickness	To be known
EX		Linear part of pressure rise due to leak rate and warming of product	To be solved
t	[s]	Time	Measured

Hands On

The material shown in this presentation does not represent the official oppinion of Bayer Pharma or any linked subsidiary company

Bayer Pharma or any linked subsidiary company are not responsible for any content of this presentation

Thank you for your attention!

<u>Questions?</u>

Addendum

Table of critical temperatures

Sucrose	amorphous	307,9µbar	-32°C
Mannitol	crystalline	3.685,0µbar	-6°C
Lactose	amorphous	466,9µbar	-28°C
NaCl	crystalline	850,2µbar	-22°C
CaCl ₂	crystalline	23,8µbar	-54°C

Addendum

Preparation to use the Excel-Solver

- Activate Macros / Deactivate "protection"
- Register Solver in MS-Excel
- Install Solver as VBA-Reference

X 🔒	1 17 • (** •	 I ≠ BTM-Calculator Berlin.xlsm [Schreibgeschützt] - Microsoft Excel nichtkommerzielle Verwendung 													
Datei	Start	Einfügen Seite	nlayout For	meln Daten	Überprüfen Ansicht										۵ 🕜 🗖 ۵
Electron (} <mark>∦</mark>	Arial •	12 × A A		≫ - Zeilenumbruch	1	Benutze	rdefinie	ert ≠	Badinata Ala Tak	lla Zallanfarmat	1	ë™ Einfügen × ₩ Löschen ×	Σ× Z	Å
Einru	gen 🕩	F K U - M	• (3) • <u>A</u> •		1 1 Verbinden un	d zentrieren 🝷	- 9 - 9	6 000	,00 +,0	Formatierung * formatier	en * *	vorlagen	Format *	2* und Filt	ern * Auswählen *
Zwisel	naplage 🕼	Schriftar	t G		Ausrichtung	Ξ.		Zahl	19	Format	vorlagen		Zellen	Be	arbeiten
() s	icherheitswar	nung Makros wurd	en deaktiviert.	Inhalt aktiviere	n										×
	F8	+ (=	fx =6145/(24	4,305-LN(Pice))	-K3										
4	A	P	C	D E	F	G	Н	1	J	K	L	Μ	N	0	P F
1					Fit										
2 Po		8,1E-2mbar		Plce	2,5E-1mbar	1,8E-11	Torr			1,333mbar/Torr					
3 9s	helf	0,0°C	273,2K	K1	3,5E-1[1/K s	1				273,15					
4 N		210 Vials		K2	1,3E-3mbar/s	1									
5 D	/ial	28 mm	2,8cm												
6 Vi	al thickness	1 mm	0,1cm	RMS	11,70										
7 Ap)	5,31cm ²	6 60E 2m3	T	24.1%	1									
0 5	hamber lling boight	8 mm	0,00E-2111	Ice	-34,1 0										
3 FI	ling neight	o mm	U, OCITI	Ishelf	0,0 0										
11				Re	2.87F+1cm ² mbar h/o				l eak rat	e 5 00 E-3 mbar x I / s					
12				FX	1.3F-3mbar/s					7 6F-5mbar/s	5 7E-5Torr/s				
13					1,02 0110.0110					1.8E-3mbar	0,720,000				
14 Fi	ling	3,0g													
15 Co	oncentration	5%			Clean Ta	ble									
16 Sc	olid Content	31,5g	3,15E-2kg												
17					20	1	, ji								
18 Pr	essure Rise	2,0E-1mbar	2,0E+2µbar												
19 ∆t		24,0s			Ice Temperati	ure Fit									
20 EF	2	4,9E-2µbar			- C										
21															
22								-							
14 4 1	H Cockpi	it Input Diagram	n / Example 0	1 / Example 02	Example 03 / Example	e 04 / Exam	ple 05 🏑	Examp	ole 06 / E	Examp 🛛 🖣			ш		•
Bereit		The second second	- Sec						2 (1) 					回巴 100%	$\Theta - \nabla - \Theta$
		0											DE -	- 1	.atl 🔥 01:08 17.03.2012

X 🚽 47 + (4 + 1 +	BTM-Calculator Berlin.xlsm [Schreibgeschützt] - Microsoft	Excel nichtkommerzielle Verwendung	
Datei Start Einfü	gen Seitenlayout Formeln Daten Überprüfen Ansicht		ద 🕜 🗆 🗃 🛛
 G Speichern Speichern unter i Öffnen i Schließen 	Informationen zu BTM-Calculator Berlin D:\BTM-Calculator Berlin.xlsm		
Zuletzt verwendet	Sicherheitswarnung Inhalt aktivieren * Sicherheitswarnung Der aktive Inhalt enthält möglicherweise Viren und andere Sicherheitsrisiken. Der folgende Inhalt wurde deaktiviert: Makros Sichenten Inhalt nur aktivieren, wenn Gie dem Inhalt der Datei vertrauen. Einstellungen für das Sicherheitscenter Nitere Informationen zu aktiven Inbulken	Eigenschaften - Größe 64,4KB Titel Titel hinzufügen Kategorien Tag hinzufügen Kategorien Kategorie hinzufügen	
Drucken Speichern und Senden Hilfe	Speichern unter Speichern. Speichern	Verwandte Datumsangaben Letzte Änderung 28.10.2011 00:59 Erstellt 06.03.2007 18:04 Zuletzt gedruckt 03.05.2007 09:57	=
 Optionen Beenden 	Berechtigungen Jeder kann diese Arbeitsmappe öffnen und beliebige Teile kopieren und ändern.	Verwandte Personen Autor Georg Frinke Autor hinzufügen Zuletzt geändert von Georg Frinke Verwandte Dokumente Dataionaicharant öffnan	
	Für die Freigabe vorbereiten Auf Probleme überprüfen * Bevor Sie diese Datei freigeben, machen Sie sich bewusst, dass sie Folgendes enthält: Bokumenteigenschaften, Druckerpfad, Name des Autors und Verwandte Datumsangaben Unsichtbare Objekte Inhalte, die von Personen mit Behinderungen nicht gelesen werden können	Alle Eigenschaften anzeigen	
		DE	▲ 🕨 🗊 .iil 崎 01:12 17.03.2012

Register Solver in MS-Excel

🗶 🛃 47 + (4 +	Ŧ	B	TM-Calculator Berlin.xlsm [Schreibgeschützt] - Mi	icrosoft Excel nichtkommerzielle Verwendung		
Datei Start	Einfügen S	Excel-Optionen		100 C	? ×	X 🖥 🗆 🕥 🖉
Aus Access Aus dem Web Aus Text Externe	s anderen Vori Quellen * Verbi Daten abrufen	Allgemein Formeln Dokumentprüfung	Microsoft Office-Add-Ins anzeigen u	erung Teilergebnis ben * erung		
F8	+ (m	Speichern	•	[av]	i wax	
A 1 2 P ₀	B 8,1E-2mb	Sprache Erweitert	Aktive Anwendungs-Add-Ins Keine aktiven Anwendungs-Add-Ins Inaktive Anwendungs-Add-Ins	Un	тур	0 P
3 9 _{shelf} 4 N 5 D _{Vial}	0,0 210 Via 28 m	Menüband anpassen Symbolleiste für den Schnellzugriff	Analyse-Funktionen Analyse-Funktionen - VBA Ausgeblendete Arbeitsblätter	C:\ffice\Office14\Libran\Analysis\ANALYS32.XLL C:\ice\Office14\Libran\Analysis\ATPVBAEN.XLAM C:\ (x86)\Microsoft Office\Office14\OFFRHD.DLL C:\ (x86)\Microsoft Office\Office14\OFFRHD.DLL	Excel-Add-In Excel-Add-In Dokumentprüfung	
 6 Vial thickness 7 Ap 8 V_{ohamber} 9 Filling height 	1 m <u>5,31cr</u> 6 8 m	Add-Ins	Benutzerdefinierte XML-Daten Datum (XML) Eurowährungstools Kopf- und Fußzeilen Microsoft Actions Pane 3	C:\ (x86)\Microsoft Office\Office14\OFFRHD.DLL C:\ Files\microsoft shared\Smart Tag\MOFL.DLL C:\ soft Office\Office14\Library\EUROTOOL.XLAM C:\ (x86)\Microsoft Office\Office14\OFFRHD.DLL	Dokumentprüfung Aktion Excel-Add-In Dokumentprüfung XML-Erweiterungspaket	
10 11 12 13 14 Filling	3.		Nicht sichtbarer Inhalt Solver Dokumentbezogene Add-Ins Keine dokumentbezogenen Add-Ins Deaktivierte Anwendungs-Add-Ins Keine denktivierten Anwendungs-Add-Ins	C:\ fx86}\Microsoft Office\Office\4\DFRHD.DLL C:\ffice\Office14\Library\SOLVER\SOLVER.XLAM	Dokumentprufung Excel-Add-In	
15 Concentration 16 Solid Content 17 18 18 Pressure Rise 19 Δt 20 ER 21	5 31,3 2,0E-1mb 24,1 4,9E-2µb		Add-In: Analyse-Funktionen Herausgeber: Microsoft Corporation Kompatibilität: Es sind keine Kompatibilität Ort: C:\Program Files (x86)\Micro Beschreibung: Stellt Tools zur Datenanalys	tsinformationen verfügbar. soft Office\Office14\Library\Analysis\ANALYS32.XLL e für statistische und technische Analysen bereit.		
22 23 24			Verw <u>a</u> lter Excel-Add-Ins	<u>G</u> ehe zu		
II I I I Cockpit	Input Diag				Abbrechen	
Bereit						
	6				DE	▲ 🕨 🗊 .all 🌜 01:19 17.03.2012

Register Solver in MS-Excel

	- C	* -			BTM-Calculator B	Berlin.xlsm [Schreibgeschützt] - Microsoft Excel nichtkommerzielle Verwendung	
D	atei Start	Einfügen Seit	enlayout For	rmeln Dater	Überprüfen Ar	nsicht	2 - d X
	Aus Access Aus dem Web Aus Text Exter	Aus anderen Quellen Vorhai rne Daten abrufen	ndene Al dungen aktuali	ile sieren → cerk Verbind	indungen nschaften nüpfungen bearbeiten Jungen	Image: Construction of the construc	
	F8	- (0	fx =6145/(24	4,305-LN(Pice)-K3		¥
	A	В	С	DE	F	Add-Ins	
1 2 3 4	Po 9 _{shelf} N	8,1E-2mbar 0,0°C 210 Vials	273,2K	P _{ice} K1 K2	Fit 2,5E-1r 3,5E-1[1,35	Verfügbare Add-Ins: Analyse-Funktionen - VBA Eurowahrdingsteols Abbrechen	
5	D _{Vial}	28 mm	2,8cm				
6	Vial thicknes	ss 1 mm	0,1cm	RMS			
7	Ар	5,31cm ²	0.005.0.0	-		Automatisierung	
8	Vchamber	661	6,60E-2m3	I _{Ice}	-34		
9	Filling heigh	t 8 mm	0,8cm	shelf			
10				D	2 97E+1cm ² mbs	berx 1 / e	
12				FX	1 3E-3m	E-5mbar/s 57E-5Torr/s	
13				LA	1,52-511	8E-3mbar	
14	Filling	3,00				Solver	
15	Concentratio	on 5%			Clea	Tool zum Optimieren und Berechnen von Formeln	
16	Solid Conter	nt 31,5g	3,15E-2kg				
17							
18	Pressure Ris	se 2,0E-1mbar	2,0E+2µbar				
19	Δt	24,0s			Ice Tem	nperature Fit	
20	ER	4,9E-2µbar					
21							
22							
23							
24			75 1 0				
Be	reit COC	kpit / Input / Diagra	im / Example (JI / Example	JZ / Example U3 / E	example ∪4 / Example ∪5 / Example ∪6 / Exampli] 4 [IIII IIII IIII IIII IIII IIII IIII	
	9			Ø	100		01:20 17.03.2012

Install Solver as VBA-Reference

	🚽 47 + (H +	 =				BTM-Calculate	or Berlin.xl	sm [Schreib	ogeschi	ützt] - Mic	rosoft Exce	al nichtko	mmerzielle Verwei	ndung				
D	atei Start	Einfügen Seite	nlayout Fo	rmeln	Daten	Überprüfen	Ansicht											a 🕜 🗆 🗗 🔀
Noi	mal Seitenlayout	Umbruchvorscha T Benutzerdef, Ans Ganzer Bildschirr happenansichten	u V Lir ichten n V Gi	neal tternetzlin	☑ Be ien ☑ Üb Anzeigen	arbeitungsleiste erschriften	Zoom	100 Fer % einf Zoom	ster rieren	Neues Fenster a	Alle nordnen e	Fenster Sinfrieren	Teilen Ausblenden Einblenden	Nebeneina Synchrone Fenster Fenster	inder anzeigen r Bildlauf sition zurückset	Aufgabenber. speicherp	Fenct wechseln	akros anzeigen
_	K18	• (**	fx	140-0-11													M	akro aufzchn
	A	В	С	D	E	F		G		H 1	J		K	L	M	N	Re Re	lative A <u>u</u> fzeichnung
1	Pa	8 1E-2mbar		P.		Fit 2.5E	1mbar	1.8F.	Torr				1 333mbar/Torr					
2	9	0,12-21100	273 2K	124	ce	3.55	- 1110/01	1,02-	1100				273 15					·
4	Shelt NI	210 Viale	210,211	12.9		4.20	- I III oj	-					213,13					
5	Digat	210 viais 28 mm	2 8cm	152		سالحر ا	-Jinudirs											
6	Vial thickness	1 mm	0 1cm	RN	IS		11.70											
7	Ap	5.31cm ²	0,1011		1997 1997													
8	V _{chamber}	66 1	6,60E-2m³	T _l	e	0.5	34,1°C											
9	Filling height	8 mm	0,8cm	Tsh	elf		0,0°C											
10																		
11				Rp		2,87E+1cm2 n	nbar h/g				Leak ra	ate 5,00)E-3 mbar x I / s					=
12				EX		1,3E-	3mbar/s						7,6E-5mbar/s	5,7E-5Torr/s				
13													1,8E-3mbar					
14	Filling	3,0g																
15	Concentration	5%				(Clean Tab	ble										
16	Solid Content	31,5g	3,15E-2kg			<u></u>												
17														5				
18	Pressure Rise	2,0E-1mbar	2,0E+2µbar			les T	amporetu	ro Eit		· · · · · · · · · · · · · · · · · · ·								<u>. </u>
19		24,0s				ICe I	emperatu	IE FIL										
20	ER	4,9E-2µbar				8												
21																		<u> </u>
22																		
24																		
14		it / Input / Diagram	m / Example	01 / Exa	ample 02	Example 03	Example	04 / Exa	mple ()	5 Exar	nole 06	Exampli						
Ber	reit		and an								The set of	p					100 % (\rightarrow \checkmark (\bullet)
											02:14 11 🕼 17.03.2012							

	🗶 🗐 🔹 🕲 🐑 🖙 🗰 BTM-Calculator Berlin.xlsm [Schreibgeschützt] - Microsoft Excel nichtkommerzielle Verwendung											3									
D	atei	Start	Einfügen Seit	enlayout	Formeln	Daten	Überprüfen	Ansicht											۵ 🕜 ه	- 6	23
No	rmal Sei	tenlayout	Umbruchvorsch: I Benutzerdef. An Ganzer Bildschir	au 🕼 sichten rm	Lineal Gitternet	zlinien 📝	Bearbeitungsleiste Überschriften	Zoom	100 Fenster % einfriere	Neues Fenster	Alle anordnen	Fenster einfrieren	Ausbler - Einble	enden enden	Nebeneinar Cynchroner Fensterposi	nder anzeigen Bildlauf tion zurücksetz	Aufgabenber speichern	Fenster wechseln *	Makros		
Arbeitsmappenansichten				Anzeig	jen		Zoom						Fenster				Makros		_		
_		P5	• (0	f _x			-											-		-	×
-		A	В	С	D	E		Makro	-			8	x		L	M	N	0	Р		
2	Pa		8 1E-2mbar	-		Pue	2.5	Makronamou						r/Torr							-
3	9 chalf		0.0°C	273 2	ĸ	K1		Iterate			E	Aus	sführen	73 15							-
4	N		210 Vials			K2		Clean_Table	-												
5	D _{Vial}		28 mm	2,80	m			Iterate				S	chritt							1	
6	Vial th	nickness	1 mm	0,10	m	RMS						Bea	arbeiten								
7	Ap		5,31cm ²	2								Ers	stellen								
8	Vchami	ber	66	6,60E-2n	n ³	Tlce															
9	Filling	height	8 mm	0,80	m	T _{shelf}						Lö	schen								
10												_ Opti	ionen								
11						Rp	2,87E+1cm		1					(I/s							
12						EX	1,3	Makros in:	Alle offenen Arb	peitsmappen		•		bar/s	5,7E-5Torr/s						-
13							-	Beschreibung	g					mbar							-
14	Filling		3,00	3			_														-
15	Solid	Contont	31 50	3 155 24	0		_														-
17	Solid	Content	01,0g	0, TUL-2h	y							Abb	brechen		~			5		8	
18	Press	ure Rise	2.0E-1mbar	2.0E+2ub	ar			-		-	-	_									
19	Δt		24,0s				lce	Temperature	e Fit												
20	ER		4,9E-2µbar																		
21																					
22																					
23																					
24																					-
14	< > H	Cockpi	t / Input / Diagra	am / Examp	le 01 /	Example 0	2 / Example 03	Example (04 / Example	e 05 / Exa	mple 06	Examp	•					_		•	
Bereit												0									
	9			1												DE		🏴 🔒 .all	02 17.03	2:17 3.2012	

Aicrosoft Visual Basic for Applications	- BTM-Calculato	Berlin.xlsm - [Modul2 (Code)]		
📴 Datei Bearbeiten Ansicht Ein	fügen Forma <u>t</u>	Debuggen Augsführen Extras Add-Ins Fenster ?	Frage hier eingeben	×
i 🛛 🔤 - 🕞 X 🖻 🖻 🗚 🔊 ((* • II 🖬	🖌 😻 🕾 🛫 🧭 🔇 😃 Verweise		
Projekt - VBAProject	×	(Allgemein)		
Tabelle 1 (Cockpit)	-	Sub Clean_Tab Sheets ("II Ontionen		
Tabelle2 (Input)		Range ("A2 Eigenschaften von VRADroject		
Tabelle3 (Example 01)		Selection		
Tabelle4 (Example 02)	_	Range ("C3 Digitale Signatur		
Tabelle5 (Example 03)		Selection.ClearContents		
Tabelle6 (Example 04)		End Sub		
Tabelle7 (Example 05)	E	Sub Iterate()		
Tabelle8 (Example 06)				
Tabelle9 (Example 07)		SolverOk SetCell:="\$F\$6", MaxMinVal:=2, ValueOf:="0", ByChange:="\$F\$2:\$F\$4"		
		Solversolve		
Modul2	-	End Sub		
Eigenschaften - Tabelle1	×			
Tabelle1 Worksheet	•			
Alphabetisch Nach Kategorien				
(Name) Tabelle 1				
DisplayPageBreaks False				
DisplayRightToLeft False				
EnableAutoFilter False				
EnableCalculation True				
EnableFormatConditionsCalcula True				
EnableOutlining False				
EnablePivotTable False				
EnableSelection 0 - xINoRestr	ictions			
Name Cockpit				
Scrollarea				
Visible -1 - viSheetVi	icible			
				► ►
	Ø	DE	• • • • •	02:18 17.03.2012

Then close all windows, except Excel table

...Run "solver" once manually...

..and careful listen to the further explanations of the instructor