

Hands-on:

Development of a cycle based on data derived from the formulation

Georg Frinke - Process Engineer Volunteer for PDA

Freeze Drying Cycle

- Freezing
- Evacuation with condenser cooling
- Sublimation
- Desorption
- Defrosting (during unloading, Start of 1,0E-2mbar Turn-Around)

Critical Process Aspects

Nucleation (Freezing)	 Pore Size (Cooling Rate, Nucleating Temperature) Structure of Solid (Cooling Rate, Temperature – Time Profil)
Sublimation (Primary Drying)	 Critical temperature during sublimation (Sublimation Rate, Vapor pressure) Complete removal of ice
Desorption (Secondary Drying)	• Residual Moisture (Desorption Rate, Gas Moisture, Temperature)

Parameters for a Freeze Drying Recipe

- Freezing Rate
- Shelf Temperature and Chamber Pressure during Sublimation Phase
- Shelf Temperature and Chamber Pressure during Desorption Phase
- Step duration
- Ramping Rates

Parameters determined previously by formular developers

- Vial Design / Stopper Design
 - Standard Vial design according to ISO 8362-1
 - Standard Stopper design: EU/US, fitting with Vial neck
- Product composition / filling volume
 - > 1,8ml required: Vial type 2R selected (Layer: 12mm)
 - ➤ 5m-% of solid content
 - Load per batch: 63kg
 - Evaporation Rate for ice free product: <0,000'5h⁻¹

Parameters determined previously by formular developers

• Sorption Isotherm shows a good relation between moisture and desorption between +25...35°C ($p = 50\mu bar$)

• Temperature for long-term storage

<40°C

• Required residual moisture for long-term storage

➤ below 2%

Desorption Rate for target moisture: <0,000'05h⁻¹

Machine Parameters

- Cooling Rate at loaded shelfs: 1,5K/min
- Heating Rate at loaded shelfs: 2,0K/min
- Chamber Volume: 6.600I

Parameters for a Freeze Drying Recipe [1]

Freezing Phase

Selected ramp rate	1,5	K/min
Minimum temperature	-40	°C
Hold time	02:00	hh:mm

How could forced nucleation be implemented?

Sublimation phase					
Sublimation pressure	200400	[µbar]			
Heating Rate	2	K/min			
Shelf temperature	-10	°C			
Step duration	24:00	hh:min			

Detection of critical temperature

• Temperature resistance measurement at different ramping speeds

Fig. 1.22.1a. Electrical resistance as a function of temperature of 1% NaCl solution. Cooling rate 3 °C/min, warming rate 3 °C/min and the first derivative $d(\log R)/dT$ measured down to -120 °C

Parameters for a Freeze Drying Recipe [2]

End of sublimation phase

Pressure Rise for safe endpoint detection	0,08047	[µbar/s]

Desorption phase

Heating Rate	2	K/min
Shelf Temperature	35	°C
Desorption Pressure	50	[µbar]
Step duration	09:00	hh:min

PAT Quest: What could be done for a dynamic desorption control?

Residual Moisture (KF) decrease during SD

The material shown in this presentation does not represent the official opinion of Bayer Pharma or any linked subsidiary company

Bayer Pharma or any linked subsidiary company are not responsible for any content of this presentation

Thank you for your attention!

Questions?