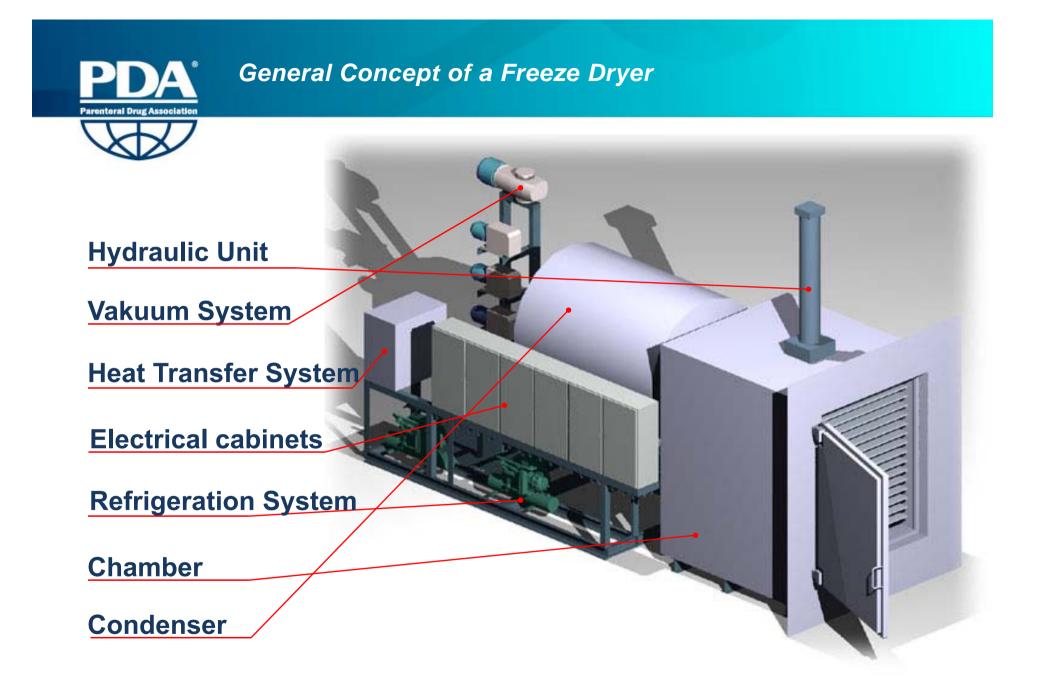


Process Design

Derive design from process requirements

1


PDA Europe Development of a Freeze Drying Process

Georg Frinke Bayer

Georg Frinke - Process Engineer

Volunteer for PDA

Connecting People, Science and Regulation[®] 3

- Freezing & Evacuation
- Primary Drying / Sublimation
- Secondary Drying / Desorption
- Stoppering
- Unloading

=> Process Requirements determine Design (URS)

- Loading speed must correlate with filler speed
- Class A environment
- Pusher design should consider open vial
- Row-by-row to be preferred 100% position tracking
- Shelf package capacity must fit batch size
- Shelves to be temperature controlled
- Shelf interface
- Chamber to be pressure controlled

- Cooling performance & heat transfer system
 accuracy & performance
- Controlled nucleation device
- Temperature distribution at temperature plateau
- Shelf package capacity must fit batch size
- Evacuation performance

Primary Drying – Main Design Requirements

- Cooling/heating performance & heat transfer system accuracy
- Main valve size
- Condenser performance & capacity
- Evacuation performance & vacuum control accuracy
- Devices for product temperature
 measurement & end point detection

Secondary Drying – Main Design Requirements

- Heat transfer system accuracy
- Shelf temperature distribution
- Vacuum control accuracy
- Devices for desorption rate measurement

Stoppering – Main Design Requirements


- Pressure control accuracy
- Shelf temperature distribution
- Shelf evenness
- Maximum stoppering force
- Stoppering force homogeneity
- Devices for desorption rate measurement

- Unloading speed must correlate with Capper speed
- EU Annex 1 (Grade C with grade A air supply)
- Shelf interface
- Chamber to be pressure controlled

Requirement overview (URS => PRS)

Connecting People, Science and Regulation® **11**

PAT equipment

Aspects of "True-PAT"

- **Process Homogeneity of Equipment**
- Process Progress replaces Time as abscissa
- PAT implies Transfer & Upscale ("Right first time")

Reasons for Process Inhomogeneity

- Manufacturing tolerances of vial format in connection with filling accuracy of whole filling system
- Variations of heat conductivity depending on vial surface at bottom
- Variations in Freezing
- Different environmental conditions of Freeze Dryer (FD) chamber (indefinite conditions at machine area / Edge effect etc.)
- Variation of vial quality due to supplier (long term)
- Variation of product composition (long term)

PAT equipment

Conclusion:

- True PAT is available for all Lyo-Phases
- Not Every Process Device is compliant with True PAT, but still provides a valuable Development Tool for robust & reproducible cycles
- Time Based Cycles are Taylor-Made for the specific Lyo, Each Lyo has its unique optimum cycle (Ice temperature during sublimation varies with Lyo Design)
- The Variation in Progress vs. Time within the PAT-Process must be considered

PAT equipment

Conclusions regarding Upscale & Transfer

- Freeze Drying must be considered as a "multi-process" taking place in each vial in a variation range
- Pilot and Production Plant require same equipment
 - Capacitance pressure transmitters
 - Same Thermo sensors (PT100/Thermocouples)
 - Same industrial standard
- Process model can be supported by use of archived process data
- Compatibility of Pilot FD to archived cycle data might require "historical" Sensor equipment e.g.
 - Pirani pressure gauge
 - Thermocouples AND PT100
- Reduction of design depending influences e.g.
 - Adjustable process parameters (high & low equipment performance)
 - Adjustable flow characteristics
 - Reduction of edge effect by temperature controlled walls
- Increase of Upscale Ratio allows reduction of required test material and general R&Defforts

- Defrosting
- Clean-in-Place (CIP)
- Sterilization-in-Place (SIP)
- Filter Test (FT) / Water-Intrusion-Test (WIT)
- Leak-Test (Vessel Integrity Testing)

=> Process Requirements determine Design (URS)

Complete discharge of condenser load

- Process temperature below +60°C
- Defrosting time below 45min
- Waste water management
- Media free defrosting

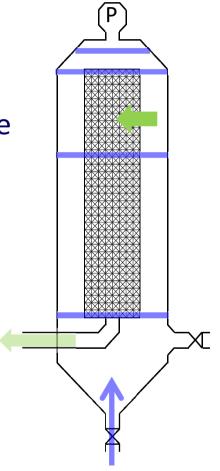
- Fully automatic process control in batch recipe
- Removal of contamination by washing
- Robust and reproducible cleaning efficacy

- Low consumption of steam
- Waste water management

Sterilization by steam condensation (121°C/20min)

- Fully automatic process control in batch recipe
- Robust and homogenious sterilization efficacy

- Low consumption of cleaning water
- Waste water management


Start of Intrusion Test: Water Inlet

Start of Intrusion Test: Isobaric Filling Phase

Start of Intrusion Test: Polytropic Filling Phase

Start of Intrusion Test: Stabilization Phase

⇒When stabilization time has elapsed ⇒all valves are closed ⇒The actual Water Intrusion Test begins

Connecting People, Science and Regulation **20**

WIT/FT-Process – Parameter requirements

Formular of Flow

$$I = \frac{V_{T}}{p_{0}} \cdot \frac{\Delta p}{\Delta t} = \frac{[ml]}{[mbar]} \cdot \frac{[mbar]}{[min]} = \begin{bmatrix} ml \\ min \end{bmatrix}$$

Comparison of "Different" Test Procedure specifications

	DIN 58356-2	Sartorius	PALL					
V _T	Gas volume at reference pressure							
P ₀	1.000mbar	1.000mbar	3.500mbar					
Δp	Pressure Drop during Water Intrusion Test (normal: ~30mbar)							
Δt	Time of Water Intrusion Test (normal:10min)							
Intrusion Limit		1,30ml/min	0,33ml/min					
Temperature Jitter	±1°C	±1°C	±1°C					
Reference Temperature	22 (±2)°C	20 (±2)°C	20 (±2)°C					

Connecting People, Science and Regulation® 21

- Fully automatic process control in batch recipe
- Test sequence according to specified conditions
 according to linked validation guide
- Steam-sterilizable
- Leak-testable
- **Desired business / commercial requirements:**
- Inline test without filter dismounting
- Rapid dry precedure
- Parallel processing to leak test

To maintain vacuum integrity during freeze drying cycles, the system must be leak tight – at least theoretically

- A common and all-over accepted limit is 0,02 mbar x l /s There is no regulatory standard specified for lyo vessels
- The leak rate is indepent from the vessel volume and a direct gauge of the mass flow into the Lyo

$$1\frac{\mu bar \cdot I}{s} = 4,1 \cdot 10^{-8} \, \frac{mol_{(20^{\circ}C)}}{s} = 1,2 \frac{\mu g_{Air,(20^{\circ}C)}}{s}$$

• Fully automatic process control in batch recipe

- Rapid evacution
- Parallel processing with filter test

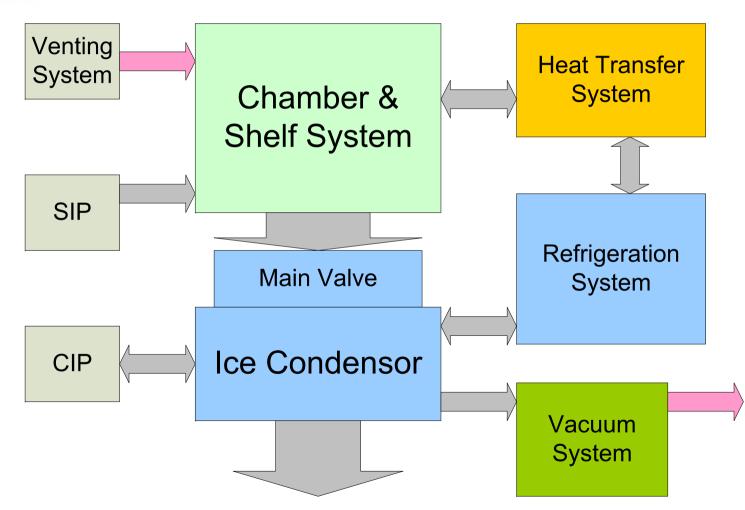
Process vs Purity System

	Vessel-System	CIP-	SIP-	Aeration &	
		System	System	Filter System	
CIP	X	X			
SIP	X	X	X	X	
Leak test	X			X	

GMP-Requirement overview (URS => PRS)

	Chamber	Condenser	CIP-Sy	CIP-System		SIP-System		Aeration & Filter System		Process control
	Pressure Control	Pressure Control	Water pressure control	Water Temperature Control	Steam Pressure Control	Drain Temperature Monitoring	Filter Pressure Monitoring & Accuracy	Temperature Control	System Vacuracy	Process protocol
Defrosting		X								X
CIP-Process	Х		X	X						X
SIP-Process	Х				X	Х				X
FT-Process		X					X	X		X
LT-Process									Х	X

Connecting People, Science and Regulation® 26


Business-Requirement overview (URS => PRS)

	Vessel System	CIP-System		SIP- System	Cooling & Heat Transfer System	Aeration & Filter System			Vacuum system	Process control	
	Process Parallelization	Waste Water Management	Performance	Performance	Rapid Vessel Cooling	Aeration Performance	Drying Performance	Temperature Control	Process Parallelization	Performance	Process Parallelization
Defrosting		X								Х	
CIP-Process		X	X							Х	
SIP-Process	Х	X		Х	X	X			X	X	X
FT-Process	Х					X	X	Х	X		X
LT-Process	Х					X			Х	Х	X

Connecting People, Science and Regulation® 27

Interconnection of Lyo-Subsystems

Connecting People, Science and Regulation[®] 28

The specific Performance of the Lyophilizer depends mostly on

- 1. Installed Aggregates and Subsystems
- 2. Supplied Media
- 3. Design

- All Aspects of Cycle Optimization have been shown previously
- Performance restrictions at production sized Lyos must be considered
- There is no significant optimization potential at a well designed cycle at a well designed Lyo

=> Further Potential comes with optimization of Turn-Around

Process Performance – Turn around cycle

- 2. Unloading
- 3. Filter Test
- 4. Defrosting
- 5. Cleaning (CIP)
- 6. Sterilization (SIP)
- 7. Filter Test
- 8. Leak Test

=> 30h for such Turn Arounds are very common

Connecting People, Science and Regulation®

Filter Test

=> 15h for such cycles are possible

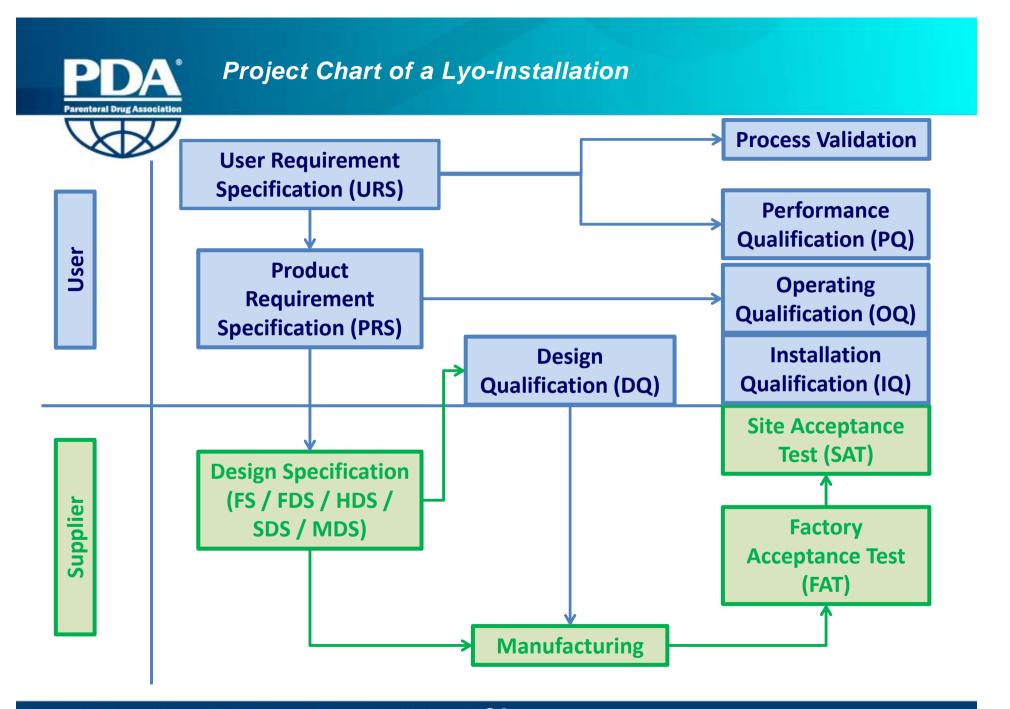
=> Further Cycle optimization potential comes by improvement of aggregates and media supply

=> 6h for Turn-Around after End of Unloading represents the limitation by current available Technologies is it worth ?.???.??? € ???

Connecting People, Science and Regulation®

Leak Test

Filter Test


Defrosting

PDA[®] Parenteral Drug Association

Process Performance

Critical Media supply and aggregates vs. process

Process	Media	Aggregates
Leak test / Evacuation	N/A	Vacuum Skid
Leak test / Aeration	Pharmaceutical air	N/A
Filter Test / Drying	Pharmaceutical air	WRP
CIP / Door locking	N/A	WRP
CIP / Aeration	Pharmaceutical air	N/A
CIP / Cleaning	CIP-Water	N/A
CIP / Drying	Pharmaceutical air	WRP / Vacuum Skid
SIP / Heat Up	Steam	
SIP / Drying	Pharmaceutical air	WRP, Vacuum Skid
SIP / Recooling	N/A	Recooling system of vessels

Connecting People, Science and Regulation® 34

The material shown in this presentation does not represent the official opinion of Bayer Pharma or any linked subsidiary company

Bayer or any linked subsidiary company are not responsible for any content of this presentation

Thank you for your attention!

Connecting People, Science and Regulation[®] 36

Any Questions?

Lunch Time