

Auxiliary Systems of a Lyophilizer

1

Design & Engineering

PDA Europe Development of a Freeze Drying Process

Georg Frinke Bayer

Georg Frinke - *Process Engineer Volunteer for PDA*

Overview – Auxiliary systems with direct GMPrelevance

- Aeration System
- Sensor Equipment / PAT-Methods
- Process Control System (PLS) / HMI (SCADA)

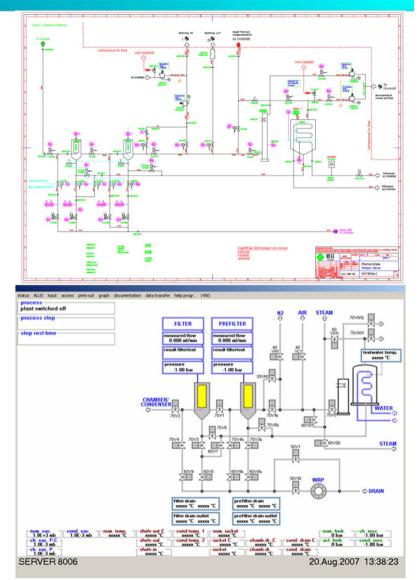
Aeration System

Connecting People, Science and Regulation® 4

Venting System

General Design Requirements

- Consists of:
 - Filter units (redundant) with inline intrusion test
 - Test water preparation
 - Filter drying equipment
 - Pressure & temperature sensors in filter housing
 - Designed to maintain validated test conditions
 - Vacuum control devices (part of vacuum system)
 - Equipment for sterilisation
- Pressure / Vacuum regulation
- Providing sterile air/nitrogen into the vessel system
- Aeration during Turn-Around Processes ("20min")

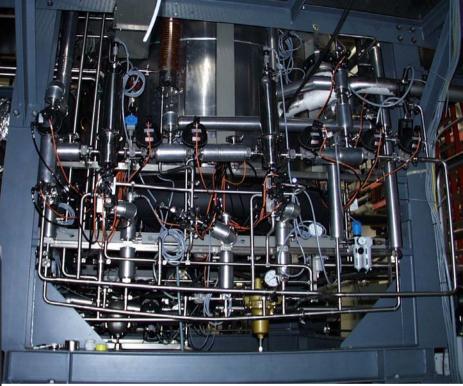

PDA[®] Parenteral Drug Association

Aeration System

Filter Test

State of the Art

- Automated integrity tests of filters by the Freeze Dryer control system with internal test water generator
- Compatibility to all well-known cartridge suppliers by variable Testparameters
- Filtertest results are part of the automatically generated Batch documentation
- Indication, record & control of test water conditions at storage tank and filter housings



Aeration System

Real installations

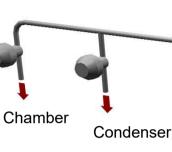
Connecting People, Science and Regulation®

7

Aeration System

XX

Sartorius procedure


Integrity Test

Integrity test is effected automatically.

General Information

The integrity of the venting filter is tested using the Water Intrusion Test method (WIT).

The filter housing is filled with water on the upstream side up to the top of filter cartridge. The remaining volume of air is compressed to a pressure of 3500 mbar abs.. After a stabilization time the water intrusion rate is determined by measuring the pressure drop in the filter within a defined testing time. After the test, the water needs to be eliminated and the filter must be dried.

Start of Integrity Test

The preconditions to start the integrity test are following:

- All operating media are present.

No other sub process is running.

Freeze-drying process is not running.

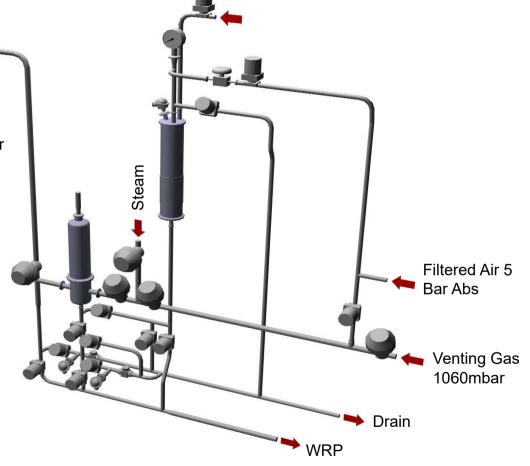
Temperature measurement point in the container has no failure (TIRSA 6.6)

Filter pressure gauge has no failure (PIRSA 6.4)

If all this conditions are fulfilled, the integrity test can be started .

This program can be selected in the start parameters of the sterilization cycle or can be started manually.

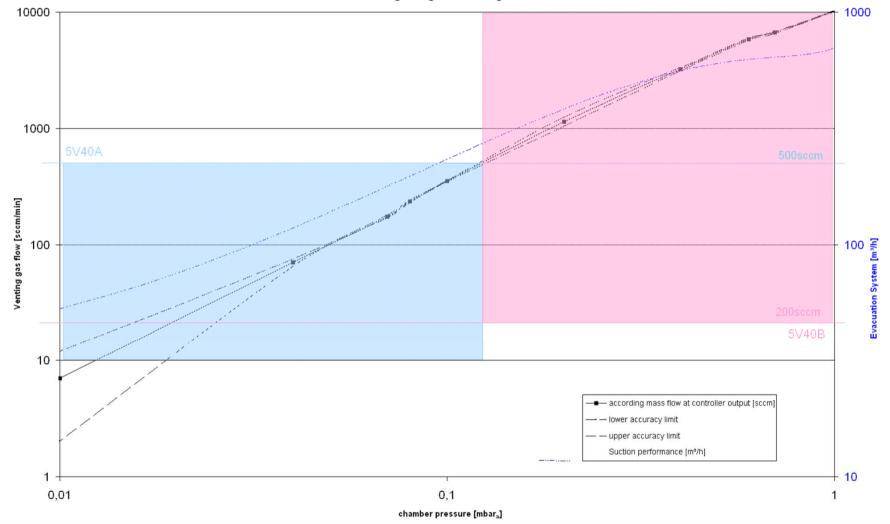
When the operator clicks the start button and the conditions are not fulfilled, the failure message "Integrity test process not started" is generated.


Integrity Test Alarms

During the cycle following integrity test specific alarms can be generated:

Integrity test process not started

- Test pressure not built up
- Test pressure too high


Test pressure drop too high

Aeration System

 Parentiteral Drug Association
 Flow Controller – vacuum system

Working Range of venting control

9

Connecting People, Science and Regulation®

Sensors

Connecting People, Science and Regulation® **10**

Sensor equipment

V Use of sensor types

- Pressure control
 - •Venting during Turn-Around-Cycles (CIP, SIP, Filtertests)
 - •CIP-Inlet Line to maintain reproducible nozzle spray behaviour
 - Sterilization control
- Vacuum control
 - •Freeze Drying Cycle
 - •All evacuation processes

•Temperature

- •Silicone oil circuit control
- Product (preferably wireless)
- •CIP-Water (upstream to nozzles)
- •All drains to monitor sterilization efficacy
- •Filter System to monitor test water conditions

Sensor equipment

V Use of sensor types

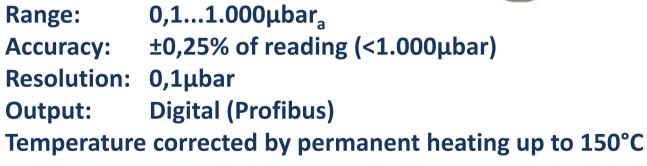
- Conductivity Sensors
 - •Measure purity of WFI at final rinse
- •Flow Sensors
 - •CIP-Inlet Line
- •Limit Switches
 - Safety installation to secure all actuated mech parts againts malfunction
 Doors and loading doors
 Shelf system components
 Binary positioning indicators of valves

Parameter	QPhase
Calibration of each GMP-relevant sensor	IQ / OQ

Pressure sensors – available technologies:

Standard pressure transducer:

Range:-1...4bargAccuracy:±20mbarResolution:10mbarOutput:4...20mA



Vacuum sensors – available technologies:

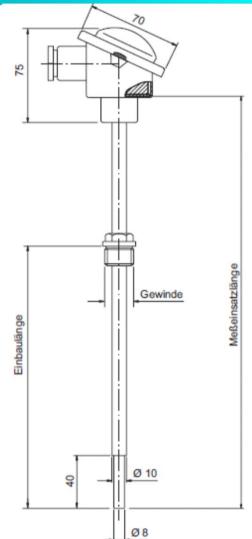
Pirani Sensor

 Range:
 1...1.000.000μbar_a

 Accuracy:
 ±15% of reading (<10.000μbar)</td>

 Resolution:
 0,1μbar

 Output:
 0...10V


Sensor equipment

Temperature sensors – available technologies:

Thermoresistive sensor (RTD)

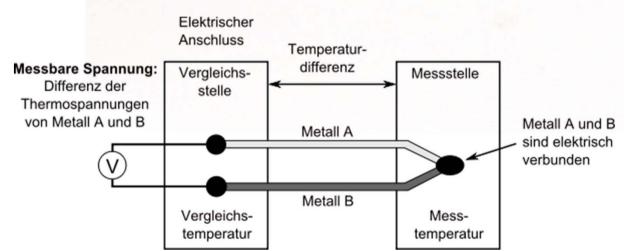
Range:-200...400°CAccuracy:±0,5°CResolution:0,1°C

Sensor equipment

Temperature sensors – available technologies:

Wireless thermoresistive sensor (PT100)

Range:-200...400°CAccuracy:±1°CResolution:0,1°C



Thermocouple element

Range:-100...+150°CAccuracy:N/AResolution:N/A

PDA®

Sensor equipment

Temperature sensors – available technologies:

- Thermocouples come with smaller heat capacity
- RTDs come with better accuracy & repeatability

PAT-control

PAT equipment

PAT & Development Tools (I)

ΤοοΙ	Nucleation									
	Trigger	Feedback	Temp. Probes	BTD / MTD	Comp. Press. Meas.	Lyotrack / Cold Plasma	NIR Gas Analysis	MS Gas Analysis	TDLA S	DRM
1.) Pharma Complianc e	Yes	?	Yes (if wireless)	Yes	Yes	(Yes)	Yes	?	Yes	Yes
2.) Process Feedback	Yes	?	NO (only Samples)	(Yes)	Yes	Yes	Yes	Yes	Yes	(Yes)
3.) Process Control	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Nucleation	Yes	Yes	No	No	No	No	No	No	No	No
Subli- ^t _{crit}	No	No	Yes	Yes	No	No	No	No	Yes	No
mation End	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Desorption	No	Yes	No	No	(Yes)	(Yes)	Yes	Yes	Yes	Yes
Costs	€	€€	€ (€€ if Wireless)	€	€	€€	€€€	€€€	€€€	€

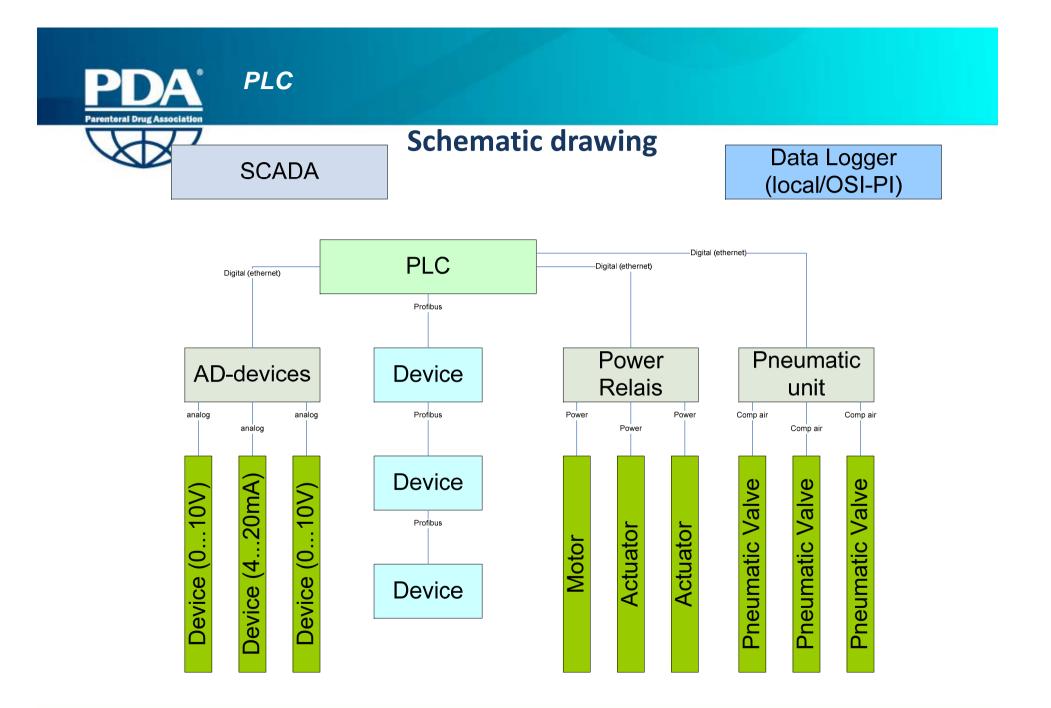
PAT equipment

Parenteral Drug Association

PAT & Development Tools (II)

ΤοοΙ		Micro Balance	Shelf Weighing	Condenser Weighing	lce Layer Monitor	Dew Point Monitor
1.) Pharma Compliance		No	Yes	Yes	Yes	No
2.) Process Feedback		No	Yes	Yes	Yes	Yes
3.) Process Control		Yes	Yes	Yes	Yes	Yes
Nucleation		No	No	No	No	No
Subli-	t _{crit}	No	No	No	No	No
mation	End	Yes	Yes	Yes	Yes	Yes
Desorption		No	No	No	No	Yes
Costs		€	€€	€€	€	€€

Control System (PLC)


•Robust process control especially during dangerous failure situations (e.g. Power loss or SCADA Breakdown)

Independent operation

Data assembling for batch generation

•Central and in-time processing of all incoming and outgoing informations

•Reliable availability (99,9% enough? Breakdown of plc => direct direct batch loss)

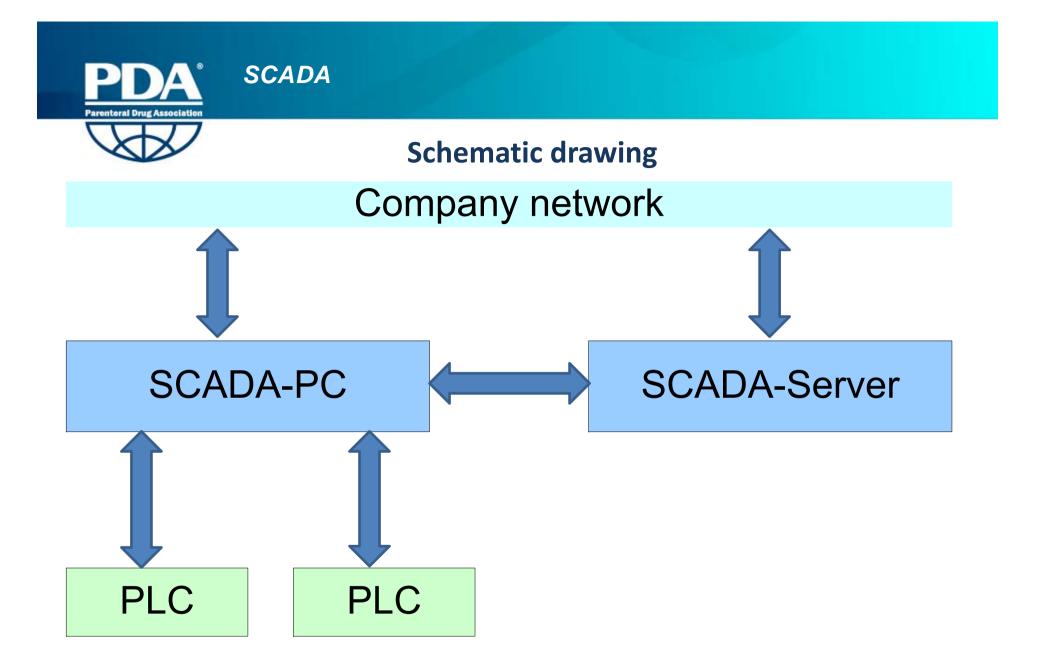
Overview – Control units

•PLC – Programmable Logic Control

PLC

- •Europe vs. US 🗇 two completely different and independent worlds
 - •Europe: Siemens is very common
 - •US: Allen Bradley is very common
 - •Further systems (as an also-ran) are available but not common for heav-duty
- Robust industrial standard, non-x86/x64-CPU based
- Very simple program-structure
- •No recording functions, memory is restored when CPU is executed
- High-available redundant units are recommended
- •An independent and dedicated power supply is current standard

SCADA


Connecting People, Science and Regulation® 27

General Design Requirements – SCADA (Supervisory Control and Data Acquisition)

- •User Interface for full control of process operation (HMI)
- Direct instructing unit to plc (e.g. recipe upload)
- Continuous data logging for process monitoring
- Generation of batch documentation

SCADA

- Network based
- •High hardware redundancy

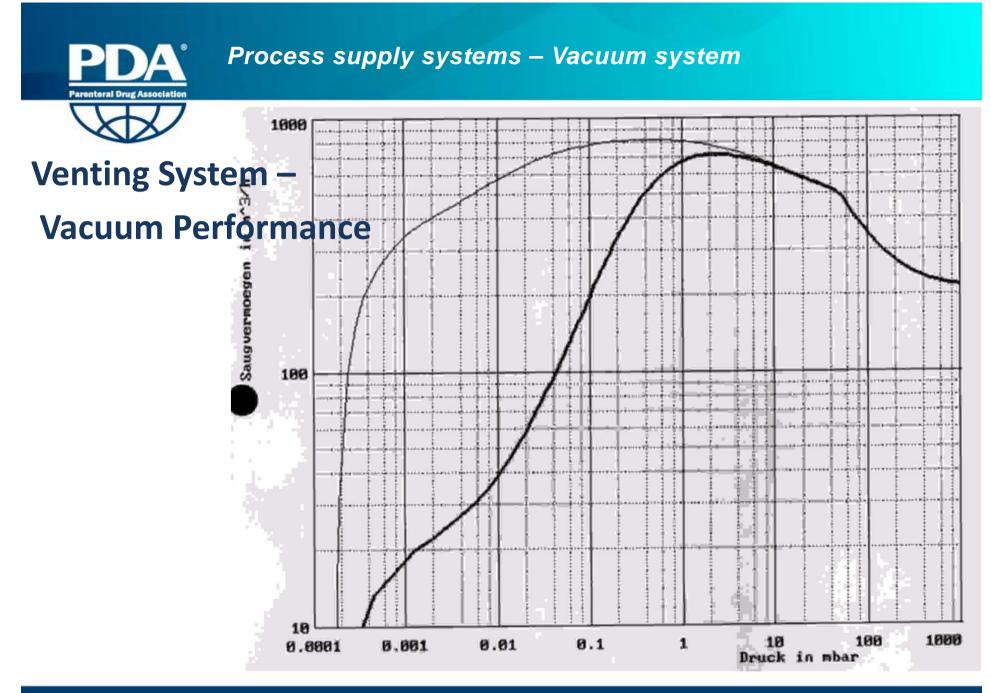
- Common Systems are Windows / Linux based
- Process Data flow to recording units via SCADA should be avoided (direct transfer from plc to be preferred)
- **GMP** requires full accordance of SCADA software to 21 CFR 11

Thank you for your attention!

Questions?

- Vacuum System
- Heat transfer System
- Refrigeration

Vacuum System


Connecting People, Science and Regulation® 34

Process supply systems – Vacuum system

General Design Requirements

- Rapid evacuation from atmosphere to process vacuum (6 logs)
- Rapid evacuation from atmosphere to process vacuum (4 logs in 20min)
- Removal of steam and wet air after CIP/SIP (high air flow)
- Splash water may be pumped also (less than 20l/min)
- Preferably washable and sterilizable

Process supply systems – Vacuum system

Vacuum System – Flow Controller

• Pressure and Vacuum control

Connecting People, Science and Regulation[®] 37

PDA® Parenteral Drug Association

Process supply systems – Vacuum system

7 Overview off existing priciples

Connecting People, Science and Regulation[®] 38

Process supply systems – Vacuum system

7 Overview off existing priciples

 Minimum system pressure: <100mbara Performance of 20400m³/h available Common evacuation time: 1540min Resistant against liquids and corrosive gases Minimum pressure: < 30µbara Minimum pressure: < 30µbara Conveyed medium is carried through pump without contact to lubricants Roots Blowe not operate atmosphere considered at 	• Minimum vacuum: < 3
 Oilfree compression High safety at compression of combustible gases Simple concept, low maintenance High cost specific performance High power consumption Conveyed medium and operating medium contact Aggregate is far from being a "sterile" process member Aggregate is far from being a "sterile" Aggregate is far from being a "sterile" process member Due to high manufacturing requirements, all dry pumps are 60100% more expensive Their tolerance against water offers a high potential for aseptic processing with wet chambers and steam after cleaning & sterilization Screw is future technology, which can replace every other system 	againstμbarer can be as• Minimum pressure sufficient for processes,

Heat Transfer System

Process supply systems – Heat transfer system

General Design Requirements

- Performant cooling (s. refrigeration) / heating rate supply ($\Delta\vartheta$ < 1,5K/min, unloaded) of the shelf system
- Operating range from -60...+60°C
- Adequate flow performance of the redundant pumps ($\Delta \vartheta$ < 1,5K)
- Robust Temperature Sensors at inlet & outlet
- Optional supply of indirect cooling for the ice condenser

$$\dot{V}_{Silicone \ oil} = \frac{\dot{m}_{Silicone \ oil}}{\rho_{(\vartheta),Silicone \ oil}}$$
$$\dot{Q} = \dot{m} \ x \ c_{p,Silicone \ oil} \ x \ \Delta \vartheta_{in-out}$$

Process supply systems – Heat transfer system

Components

Redundant Circulation pumps

Electrical Heating

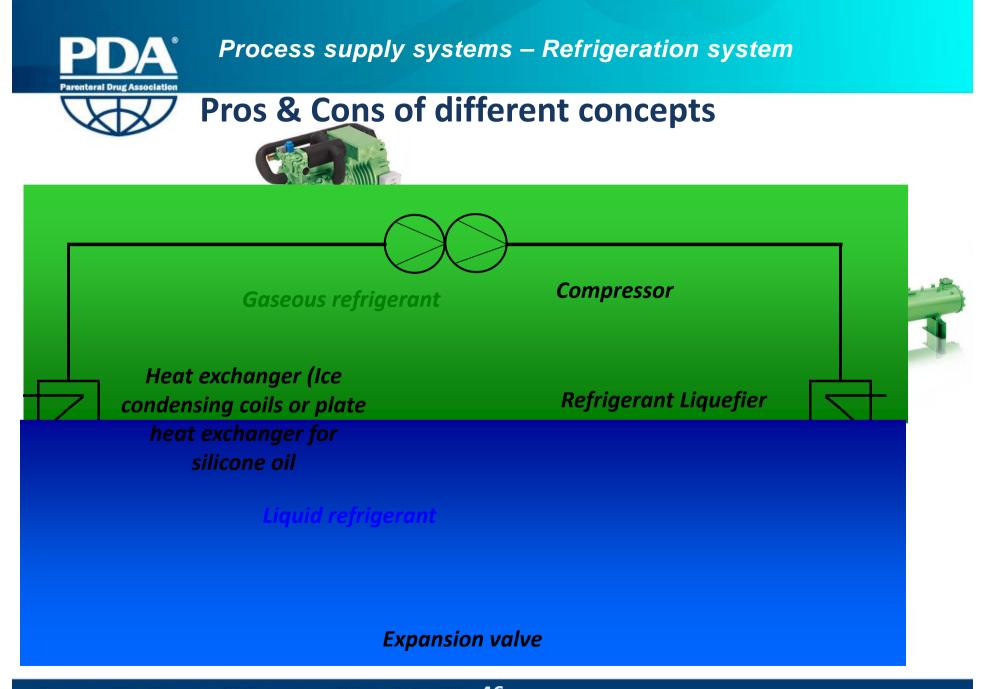
Expansion Vessel Plate Heat Exchanger

Shelf system is most important part of the silicone oil circuit

Refrigeration System

Process supply systems – Refrigeration system

7 General Design Requirements


- Performant cooling supply of the heat transfer system and direct cooling of the ice condenser ($\Delta \vartheta < 1,5$ K/min, unloaded)
- Redundant process performance
- Flexible arrangement of refrigeration units (each can take over every role)
- Integrated Failure detection system to avoid upcoming performance loss

Process supply systems – Refrigeration system

Pros & Cons of different concepts

	Liquid Nitrogen	Conventional refrigeration
Advantages	 Reduced electrical power consumption No cooling water circuit required High cooling performance high cooling rates at shelves temperature controllable Ice Condenser Drying of Products based on organic solvents Very low noise emission Low space requirements Low Maintenance requirements 	 Independent Cooling supply Safe operation without severe HSE / EHS / SHE risk
Disadvantages	 Economic LN₂ supply chain required High investment costs for media supply system required Additional Storage Tank required Safety devices required – dangereous risk of oxygen depletion Strong insulation required for safety reasons and better efficiency 	 High electric power consumption Cooling circuit required Limited cooling performance below -50°C High noise emission High space requirements Increased Maintenance requirements Future ecologic Discussion expected due to use of refrigerants

Process supply systems – Refrigeration system

Pros & Cons of different concepts

Low pressure

Heat exchanger (Ice condensing coils or plate heat exchanger for silicone oil

Cooling compressor

High pressure

Refrigerant Liquefier

Expansion valve

Important EHS / SHE / HSE Regulatories for operation of industrial equipment out of GMP

- Pressure vessel directives
 - Pressure Equipment Directive 97/23/EC (PED)
 - ASME Boiler and Pressure Vessel Code (BPVC)
- Electrical directives (CE-Code)
- Directives for refrigeration equipment

Questions?

The material shown in this presentation does not represent the official opinion of Bayer or any linked subsidiary company

Bayer or any linked subsidiary company are not responsible for any content of this presentation

Connecting People, Science and Regulation[®] 50

Thank you for your attention!