
Root Cause Investigation for CAPA

Rob Weaver, President, Weaver Consulting

Introduction

Realistic Investigation Scenario

Common Investigation Mistakes

- Inconsistent approach to investigations
- Focus on possible causes from beginning of investigation
- Unnecessary experiments & studies
- Neglect to identify and address systemic root causes
- Weeks or months without resolution

Correction

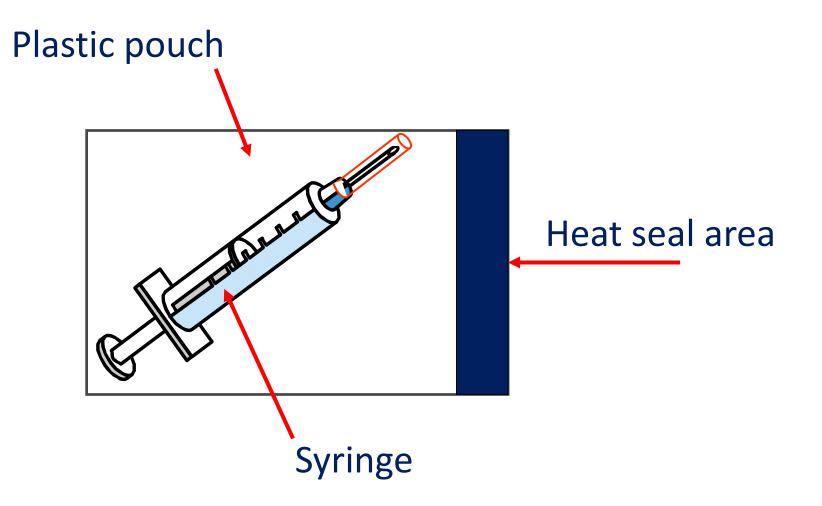
- Action taken to eliminate a detected nonconformity
- Containment to stabilize problem
- Examples
 - Scrap
 - Repairs or modifications
 - Recalls
- Investigation <u>has not</u> been conducted
- Nonconformities continue
- Additional work + expense

Corrective Action.....vs Preventive Action

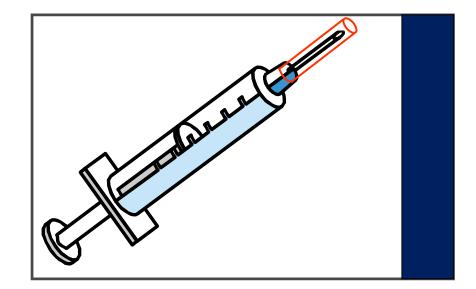
- Action taken to eliminate <u>the cause</u> of a detected nonconformity
- Requires investigation and identification of root cause

Action taken to stop or minimize recurrence

- Action taken to eliminate the cause of a <u>potential</u> nonconformity
- Often impractical to prevent all possible nonconformities


Some, perhaps most can be prevented

Step 1: Define the Performance Problem


Define the Performance Problem

Input	Process	Output
Performance gap	State the problem	Problem statement
	Describe the problem	Is/Is Not diagram
	Describe the process	Process flow diagrams
	Identify the inputs	Input/output diagrams
	Timeline of events	Timeline of events
	Team charter	Team charter

Case of the Unsealed Pouch

- Seal requirements
 - Withstand a 10 lb (44 n) pull test
 - $\,\circ\,$ Open with a 20 lb (88 n) pull test

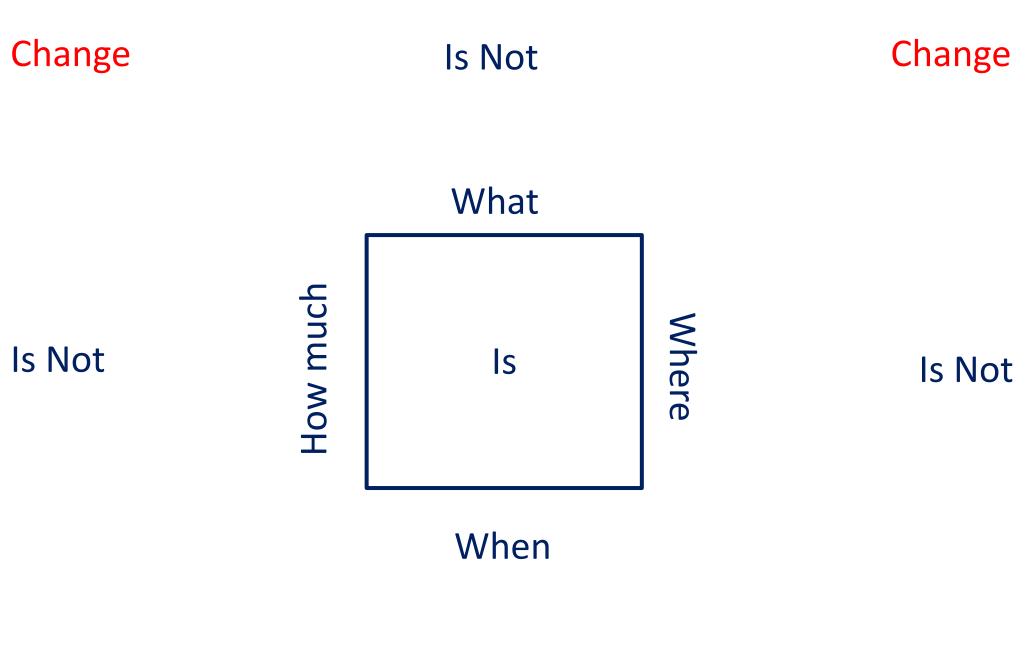
Case of the Unsealed Pouch

Customers are reporting some seals are open upon receipt...

...sterility has been compromised

State the Problem

What specific object has the defect?


Syringe pouch seals...

What is the specific defect?

<u>...are open</u>

... or failing the 10 lb pull test

Describe the Problem

Change

Is Not

Change

Is/Is Not Diagram

	ls	Is Not
	What specific object has the defect?	What similar objects could have the defect but don't?
	What is the specific defect?	What other defects could be seen but aren't?
lat	What are the defect characteristics?	What could the characteristics be but aren't?
What	What product lots have the defect?	What product lots could have the defect but don't?
	Are any part lots associated with the defect?	What part lots could be associated with the defect but aren't?
	What patterns are in the "What" answers?	What patterns aren't seen in the "What" answers?
	Where is the defective object observed geographically?	Where could the defective object be observed geographically but isn't?
e	Where is the defect on the object?	Where could the defect be on the object but isn't?
Where	Where is the defect 1 st seen in the process?	Where could the defect 1 st be seen in the process but isn't?
3	Where else is the defect?	Where else could the defect be but isn't?
	What patterns are in the "Where" answers?	What patterns aren't seen in the "Where" answers?
	When was the defective object 1 st seen (date/time)?	When could the defective object 1 st been seen but wasn't?
When	When since the 1 st time has the defective object been seen (date/time)?	When since the 1 st time could the defective objective have been seen but wasn't?
N	What is the trend (stable, better, worse)?	What could the trend be but isn't?
	What patterns are in the "When" answers?	What patterns aren't seen in the "When" answers?
с <mark>н</mark>	How many objects have the defect?	How many objects could have the defect but don't?
Much	How big or small is the defect?	How big or small could the defect be but isn't?
How I	How many defects are on the object?	How many defects could be on the object but aren't?
H	What patterns are in the "How Much" answers?	What patterns aren't seen in the "How Much" answers?

Is/Is Not Diagram: What Questions

ls	Verified	ls Not	Verified
What specific object has the defect?		What similar objects could have the defect but don't?	
Syringe pouch seals		Surgeon glove pouch seals	
What is the specific defect?		What other defects could be seen but aren't?	
Seals are open or failing the pull test		Tears, holes, product in seal, etc	
What are the defect characteristics?		What could the defect characteristics be but aren't?	
Failing 10 lb requirement		Failing 20 lb requirement	
What product lots have the defect?		What product lots could have the defect but don't?	
SY217, SY218SY235		SY216 and earlier	
Are any part lots associated with the defect?		What part lots could be associated with the defect but aren't?	
None		None	
What patterns are in the "What" answers?		What patterns aren't seen in the "What" answers?	
See above		See above	

Is/Is Not Diagram: Where Questions

ls	Verified	ls Not	Verified
Where is the defective object observed geographically?		Where could the defective object be observed geographically but isn't?	
All 30 North American sales regions (CA, US, MX)		Single country, some sales regions	
Johnsville facility		Janesville facility	
Where is the defect on the object?		Where could the defect be on the object but isn't?	
Final seal (1)		Supplier's seals (3)	
Where is the defect 1 st seen in the process?		Where could the defect 1 st seen in the process but isn't?	
Final inspection & release (100% pull test)?		Before final inspection & release?	
Where else is the defect?		Where else could the defect be but isn't?	
Production 3 in Johnsville		Production lines 1, 2, and 4 in Johnsville	
What patterns are in the "Where" answers?		What patterns aren't seen in the "Where" answers?	
See above		See above	

Is/Is Not Diagram: When Questions

ls	Verified	Is Not	Verified
When was the defective object 1 st seen (date/time)?		When could the defective object 1 st been seen but wasn't?	
Approximately two weeks ago (June 1 st)?		Before June 1 st ?	
When since the 1 st time has the defective object been seen (date/time)?		When since the 1 st time could the defective object been seen but wasn't?	
Continuously ever day since approximately June 1 st		Every other day, sporadic, some other pattern	
What is the trend (stable, worse better)?		What could the trend be but isn't?	
Stable		Worse, better	
What patterns are in the "When" answers?		What patterns aren't seen in the "When" answers?	
See above		See above	

Is/Is Not Diagram: How Much Questions

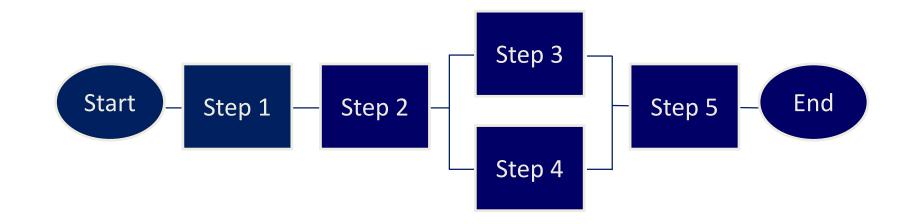
ls	Verified	Is Not	Verified
How many objects have the defect?		How many objects could have the defect but don't?	
Avg 5% daily production		Historical defect avg .01%	
How big or small is the defect?		How big or small could the defect be but isn't?	
Avg defective seal 9.3 lbs		More or less	
How many defects are on the object?		How many defects could be on the object but aren't?	
1 defect (final seal)		2, 3, 4 defects (supplier seals)	
What patterns are in the "How Much" answers?		What patterns aren't seen in the "How Much" answers?	
See above		See above	

- Ask <u>every</u> question, understanding not all will be applicable
- If an Is answer is recorded; <u>always</u> record an Is Not as well
- Ask each Is and corresponding Is Not question together
- Record multiple answers to the same question <u>separately</u>
- Record <u>disagreements</u> to questions
- Answers at this step are <u>opinions</u>...nothing more

- The defective object can be <u>anything</u>: widgets, people, software, physical/virtual processes, systems, etc
- The Where questions are attempting to identify <u>location</u> related patterns: geographically, on the object, in a process, etc
- The When questions are attempting to identify <u>time</u> related patterns: time of day/week/month/year, shift, season, etc
- The How Much questions are attempting to identify <u>numerically</u> related patterns, specific or general

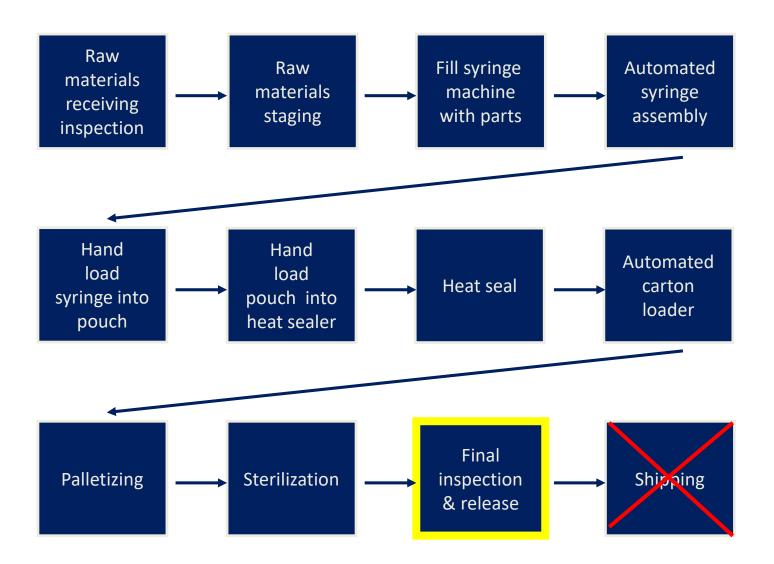
- The most critical question: <u>What are the defect</u> <u>characteristics?</u>
- May need to conduct a technical analysis to better characterize the defect
- A sensory description may be beneficial...how does the defect...
 - Feel: rough surface
 - o Smell: burnt
 - o Sound: hiss
 - Look: blackened material
 - Taste: bitter

- The 3 most important questions to describe the problem:
 - What are the defect characteristics?
 - Where is the defect 1st seen in the process?
 - When was the defect 1st seen (date and time)?

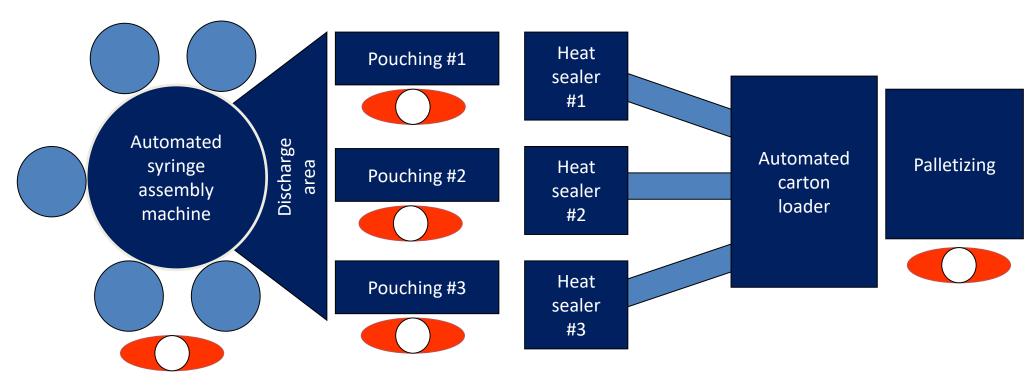

• More detail = tighter fence

- This is the problem description
- The team <u>must</u> understand the problem in this level of detail
- Places limits on the investigation
- Helps identify critical patterns

	1	1
	ls	Is Not
	What specific object has the defect?	What similar objects could have the defect but don't?
	What is the specific defect?	What other defects could be seen but aren't?
at	What are the defect characteristics?	What could the characteristics be but aren't?
What	What product lots have the defect?	What product lots could have the defect but don't?
	Are any part lots associated with the defect?	What part lots could be associated with the defect but aren't?
	What patterns are in the "What" answers?	What patterns aren't seen in the "What" answers?
	Where is the defective object observed geographically?	Where could the defective object be observed geographically but isn't?
e	Where is the defect on the object?	Where could the defect be on the object but isn't?
Where	Where is the defect 1 st seen in the process?	Where could the defect 1st be seen in the process but isn't?
3	Where else is the defect?	Where else could the defect be but isn't?
	What patterns are in the "Where" answers?	What patterns aren't seen in the "Where" answers?
	When was the defective object 1st seen (date/time)?	When could the defective object 1st been seen but wasn't?
When	When since the $1^{\rm st}$ time has the defective object been seen (date/time)?	When since the 1st time could the defective objective have been seen but wasn't?
₹	What is the trend (stable, better, worse)?	What could the trend be but isn't?
	What patterns are in the "When" answers?	What patterns aren't seen in the "When" answers?
у	How many objects have the defect?	How many objects could have the defect but don't?
Mu	How big or small is the defect?	How big or small could the defect be but isn't?
How Much	How many defects are on the object?	How many defects could be on the object but aren't?
Η	What patterns are in the "How Much" answers?	What patterns aren't seen in the "How Much" answers?

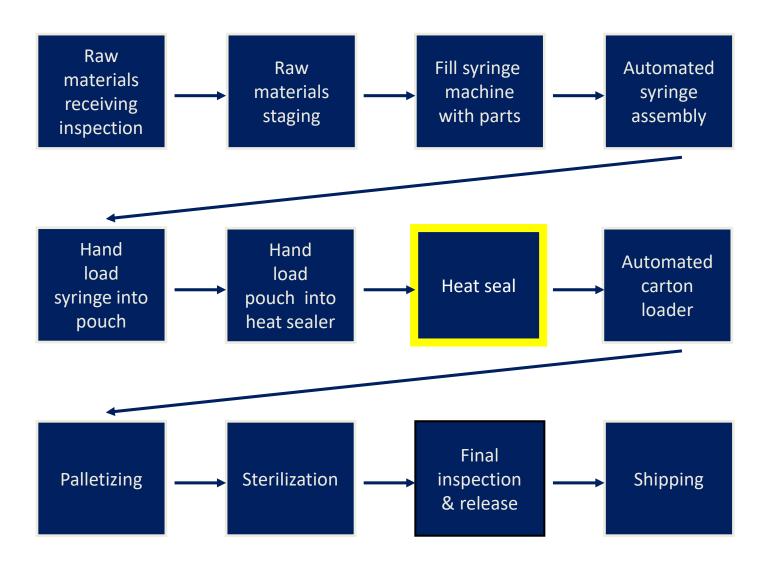

Develop process flow diagram of work being conducted

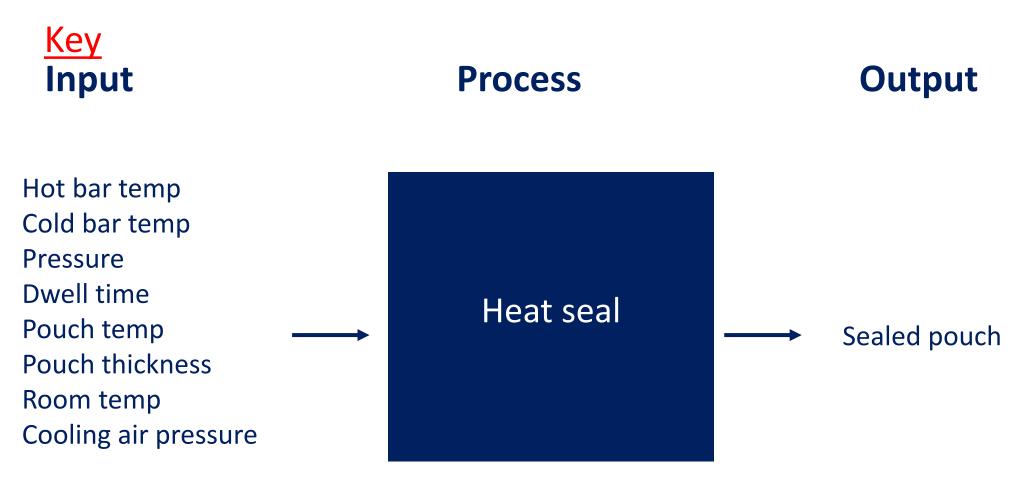
Product development Manufacturing Sterilization Release Distribution Laboratory Customer usage Disposal Repair/service


Technical root causes often result from a process change

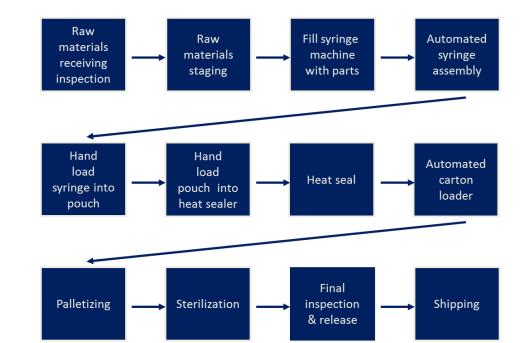
Syringe production process flow diagram

Describe the Process(es)

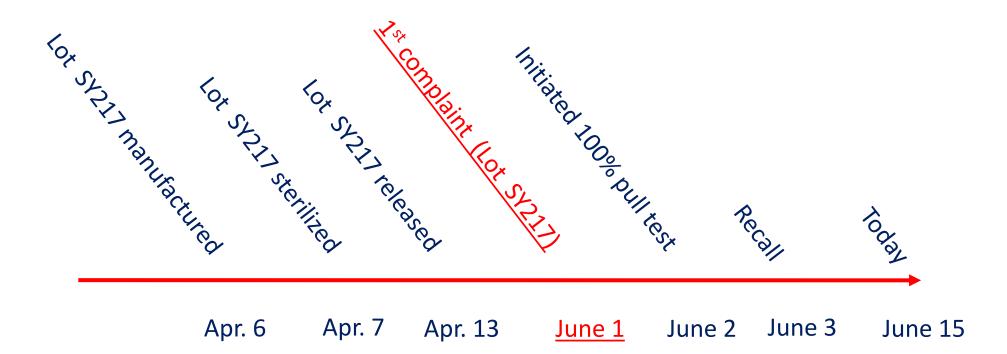

Other techniques such as a schematic diagram can be leveraged to supplement the process flow diagram



Syringe production process flow diagram


Identify the Inputs

Technical root causes often result from an input change


Flow Diagram with Inputs: Key Points

- Assures team understands the process being investigated
- Develop with the <u>experts</u>: individuals executing process regularly
- Will be leveraged throughout the investigation

Timeline of Events

List known relevant events in chronological order

Provides clarification when many events have occurred

- High level statement describing the who, what and why of the investigation
- Used selectively to capture senior management's attention to convey importance of the investigation

Team Charter

- Purpose of the investigation
 - Problem statement
 - Acceptance Criteria: restore performance to requirement
 - Cost savings goal: monetary estimate of expenses
- Identify the investigation team & leader
- Identify the member(s) of management sponsoring the investigation
- Everyone signs the charter to:
 - $\,\circ\,$ Verify what the team is working toward
 - Identify any concerns of the team, management, or sponsors
 - Identify key issues where the team will need help

Documentation

- Problem statement
- Is/Is Not diagram
- Process flow diagrams
- Input/output diagrams
- Timeline of events
- Team charter

Strongly recommended

As needed

Step 2: Collect Data

Input	Process	Output
<u>Opinions</u>		Facts
Is/Is Not diagram	Data collection plan	ls/ls Not di
Flow diagrams with inputs		Flow diagra with inputs

<u>cts</u> Not diagram

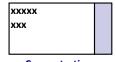
/ diagrams inputs

Objectives: Determine Data Needed

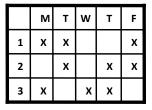
 Verify initial opinion based Is/Is Not answers

	ls	Verified	ls Not	Verified
	What object has the defect?		What similar objects could have the defect but don't?	
	Syringe pouches		Surgeon glove pouches	
What	What is the specific defect?		What other defects could be seen but aren't?	
	Seals open or failing pull test		Tears, holes, product in seal, etc.	
	What are the defect characteristics?		What could the characteristics be but aren't?	
	Failing 10 lb requirement		Failing 20 lb requirement	

• Determine additional data needed


Objectives: Determine Data Location

- Some already exists
 - Batch records
 - Lab notebooks
 - Previous experiments/studies


- Some can be captured on a go forward basis as it is generated during the investigation
 - Limited experiments to better characterize the problem
 - Not to test a possible cause

Objectives: Determine Data Analysis

- Format data so it can be interpreted:
 - Check sheets/spreadsheets
 - Pivot tables
 - Pareto analysis
 - Concentration diagrams
 - Control charts
 - ANOM (analysis of mean)
 - Multi-variable charts
 - Capability studies
 - Histograms
 - Summary reports
 - Pie charts
 - Scatter diagrams

Concentration Diagram

Checksheet

Collect Data: Verify Initial Answers

-	oblem Statement. Symge	-		_		-	
	ls	Verified	ls Not	Verified	Data Needed	Data Location	Analysis Tool
	What specific object has the defect?		What similar objects could have the defect but don't?				
	Syringe pouch seals	✓	Surgeon glove pouch seals	\checkmark	Surgeon glove defect history	Production records	Check sheet
	What is the specific defect?		What other defects could be seen but aren't?				
	Seals are open or failing the pull test	~	Tears, holes, product in seal, etc.	~	Verify actual defects: are these the only defects being experienced?	Non conformance reports (NCRs)	Pareto analysis
What	What are the defect characteristics?		What could the characteristics be but aren't?				
5	Failing 10 lb requirement	√	Failing 20 lb requirement	~	Potential additional characteristics	Analysis of scrap product; NCR review	Pareto analysis, summary report
	What product lots have the defect?		What product lots could have the defect but don't?				
	SY217, SY218SY235	√	SY216 and earlier	\checkmark	Confirm affected product lots	Production records	Check sheet
	Are any part lots associated with the defect?		What part lots could be associated with the defect but aren't?				
	None	√	None	~	Compare part lots to product lots	Production records	Pivot table
	Where is the defective object observed geographically?		Where could the defective object be observed geographically but isn't?				
	All 30 NA regions (CA, US, MX) Johnsville facility	√	Single country, some sales regions Janesville facility	~	Affected sales regions Confirm only Johnsville	Customer compliant records Janesville NCRs	Pareto Y/N check sheet
	Where is the defect on the object?		Where could the defect be on the object but isn't?				
Where	Final seal (1)	√	Supplier's seals (3)	~	Confirm only final seal is affected	NCRs	Concentration diagram
μŅ	Where is the defect 1 st seen in the process?		Where could the defect 1 st be seen in the process but isn't?				
	Final inspection & release (100% pull test)	√	Before final inspection & release	~	Confirm when defect is 1 st being identified	Production records	Process flow diagram
	Where else is the defect?		Where else could the defect be but isn't?				
	Production line 3 Johnsville	~	Production lines 1, 2, and 4 in Johnsville	~	Confirm only line 3	NCR and production records from 1,2,4	Check sheet
	When was the defective object 1 st seen (date/time)?		When could the defective object 1st been				

Collect Data: Determine Additional Data

Determine data needed to better characterize the answers to:

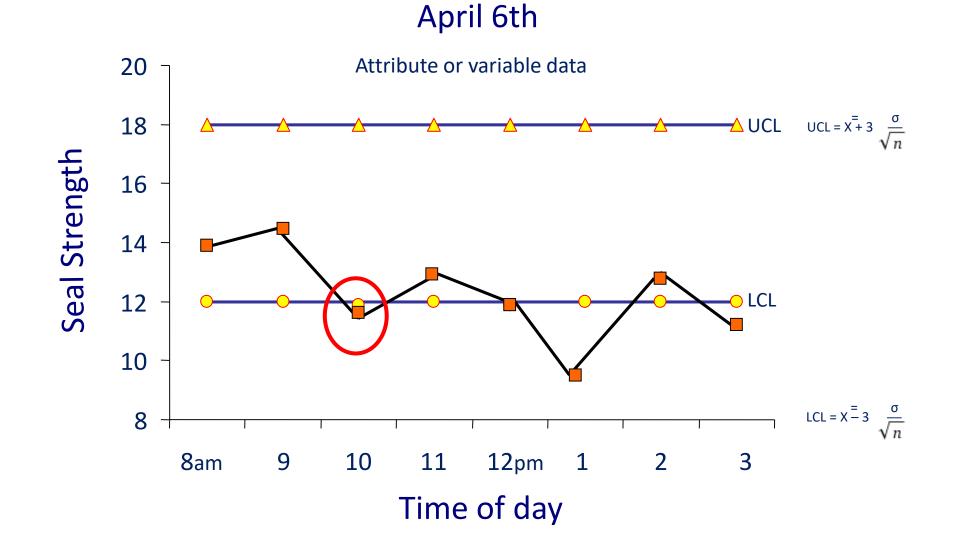
• 3 most important questions from Is/Is Not Diagram (red)

Problem Statement: Syringe pouch seals are either open or failing the 10 lb pull test

ls	Verified	ls Not	Verified	Data Needed	Data Location	Analysis Tool
What are the defect characteristics?		What could the characteristics be but aren't?				
Failing 10 lb requirement	~	Failing 20 lb requirement	\checkmark	Additional Data: Are there any other characteristics (sight, sound, smell, feel, etc)?	NCRs, scrap product	Summary report

No additional characteristics identified

Problem Statement: Syringe pouch seals are either open or failing the 10 lb pull test


ls	Verified	ls Not	Verified	Data Needed	Data Location	Analysis Tool
Where is the defect 1 st seen in the process		Where could the defect 1 st be seen in the process but isn't?				
Final inspection & release (100% pull test)?	√	Before 100% pull test?	~	Additional Data: Pull samples after heating sealing step	Real time data collection	None needed

Defective seals were identified after heat sealing

ls	Verified	ls Not	Verified	Data Needed	Data Location	Analysis Tool
When was the defective object 1 st seen (date/time)?		When could the defective 1 st been seen but wasn't?				
June 1 st	√	Before June 1 st	√	Additional Data Can this issue be identified before June 1 st ?	QC records for production line 3	Control chart measuring seal strength

Control Charts

Used to collect When data

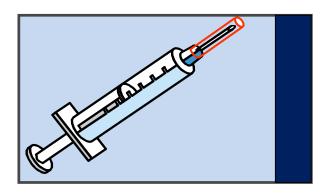
Collect Data: Determine Additional Data

Determine data needed to better characterize the answers to:

- 3 most important questions from Is/Is Not Diagram (red)
 - Patterns
 - Anything else deemed important

ls	Verified	ls Not	Verified	Data Needed	Data Location	Analysis Tool
How many objects have the defect?		How many objects could have the defect but don't?				
Avg 5% daily production	√	Historical defect avg .01%	√	Additional Data Is the defect rate consistently 5% throughout a production shift?	Begin collecting	✓ sheet

Checksheet

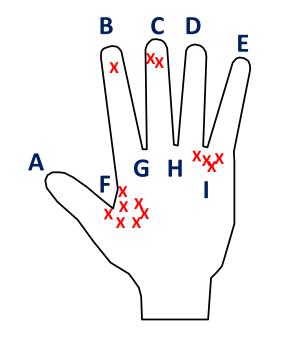

Used to collect What, Where, When, & How Much data

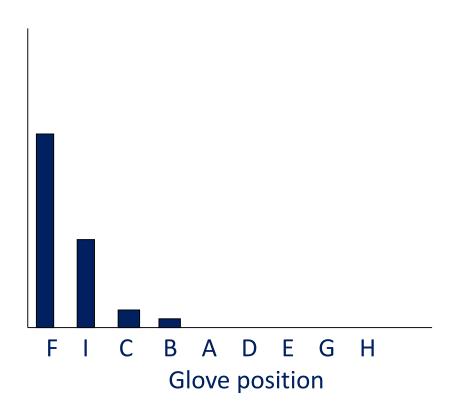
Hour	1	2	3	4	5	6	7	8
Defect count		ЖЖI ЖЖЖЖЖЖ		₩₩₩₩Ш ₩₩₩₩₩₩₩		₩₩₩₩₩₩ ₩₩₩₩₩₩₩	₩₩₩₩₩₩ ₩₩₩₩₩₩₩	II II III III III III III III III III
Total defects	72	61	73	69	79	75	68	77
Product produced	1412	1298	1431	1380	1519	1470	1388	1481
Hourly defect %	5.1%	4.7%	5.1%	5.0%	5.2%	5.1%	4.9%	5.2%

ls	Verified	ls Not	Verified	Data Needed	Data Location	Analysis Tool
Where is the defect on the object?		Where could the defect be on the object but isn't?				
Final seal (1)	√	Supplier's seals (3)	√	Additional Data Can the issue be narrowed down to a particular section of the final seal?	Begin collecting	Concentration diagram of a syringe pouch

Concentration Diagram

Used to collect Where and How Much data

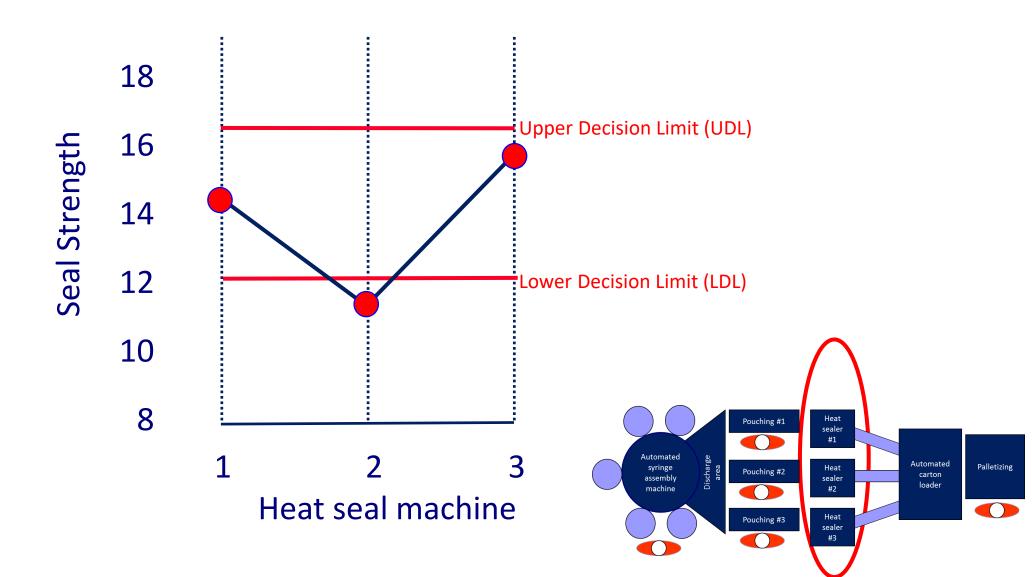



Section 1	xxxxxx xxxxxx x
Section 2	XXXXXX XXXXXX XXXXXX
Section 3	XXXXXX XXXXXX XX
Section 4	xxxxxx xxxxxx xxxx
Section 5	xxxxxx xxxxxx xxx

Defective area of seal

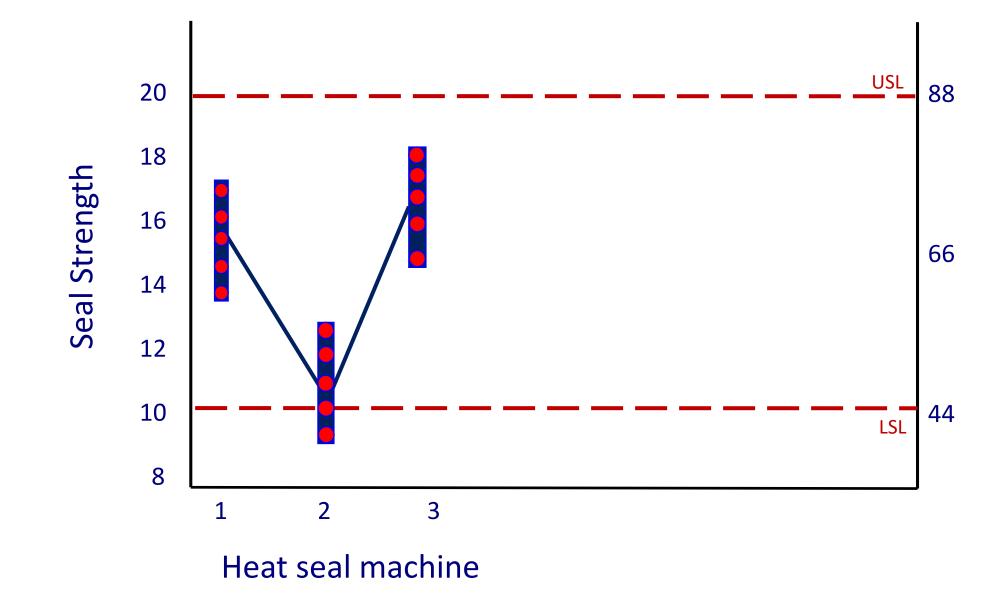
Concentration diagram

Pareto analysis

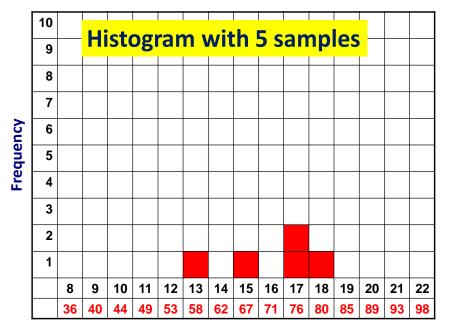


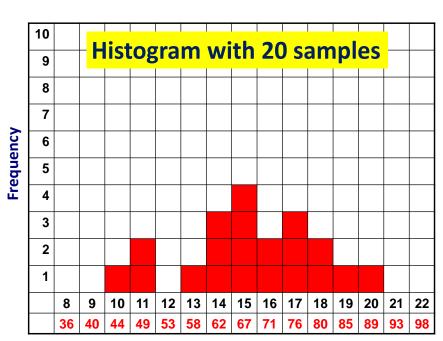
ls	Verified	ls Not	Verified	Data Needed	Data Location	Analysis Tool
Where else is the defect?		Where else could the defect be but isn't?				
Production line 3 in Johnsville	√	Production lines 1, 2, and 4 in Johnsville	~	Additional Data Can the issue be narrowed down to a particular heat seal machine on production line 3?	Begin collecting samples from each heat seal machine	ANOM Multi-vari chart Histogram/Capability study

Analysis of Mean (ANOM)

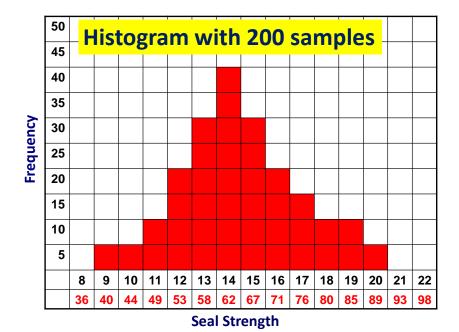

Detecting differences between similar entities

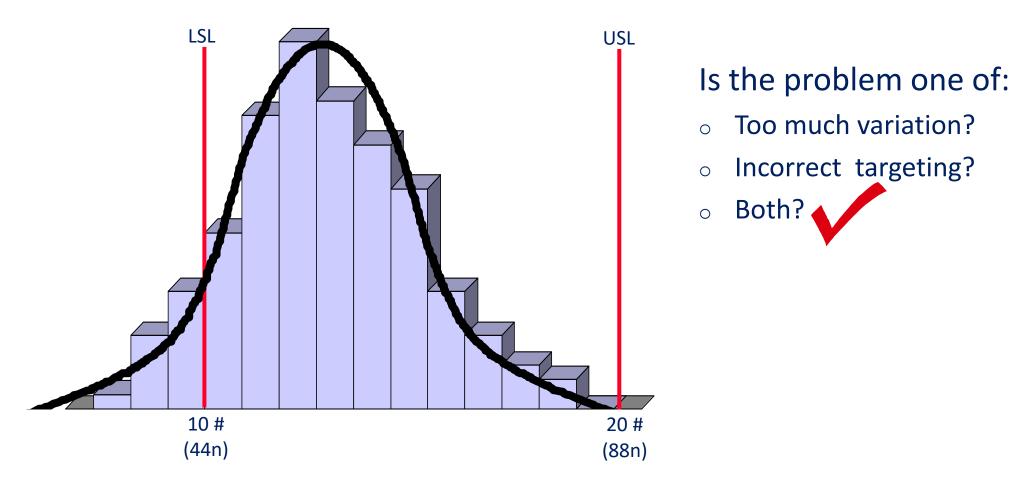
(people, work streams, machines, products, etc)


Multi-Variable Chart

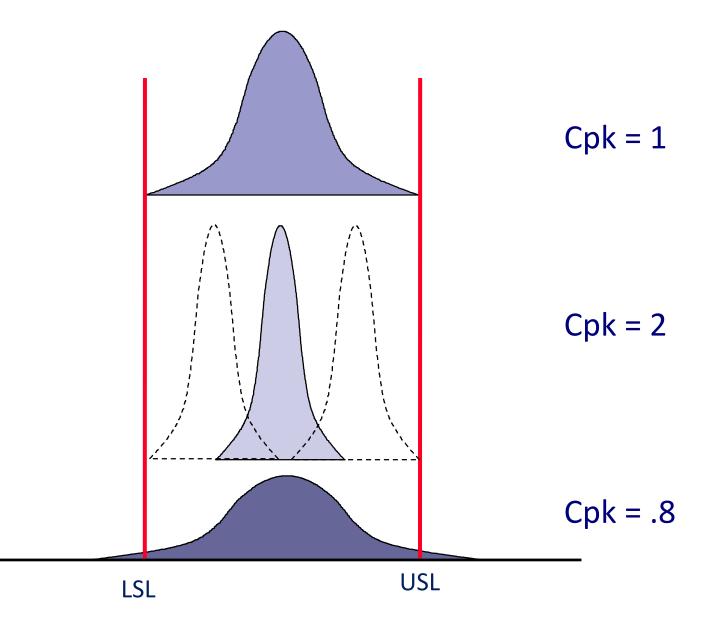

Detecting variation within and between similar entities

- Describes the performance of the product, process, machine, system, etc
 - $\,\circ\,$ Is there too much variation?
 - $\,\circ\,$ Is the variation properly targeted?
- How capable is the entity of meeting requirements?


Capability Study

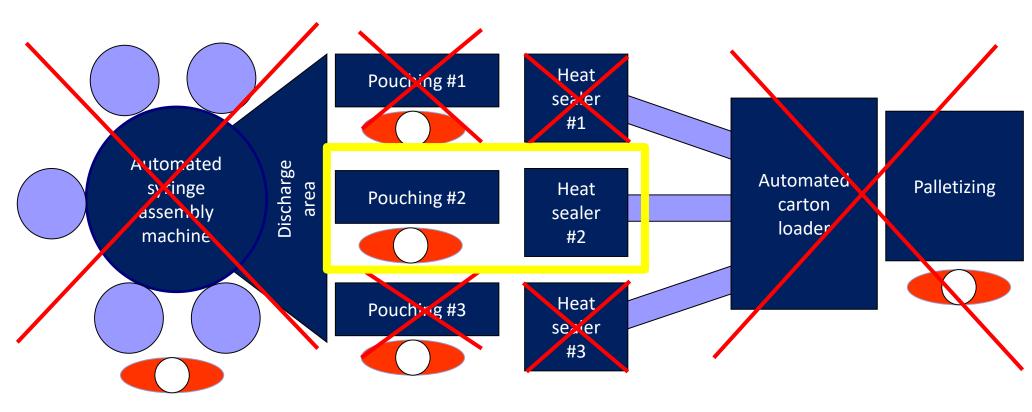

Seal Strength

Seal Strength



Capability Study

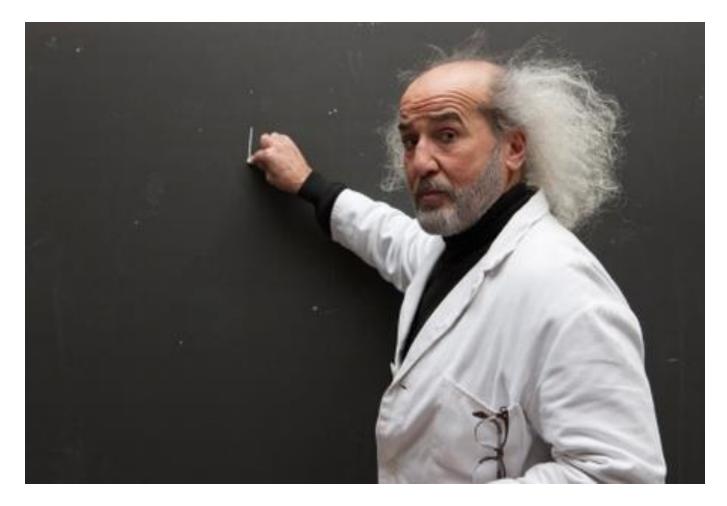
Heat seal machine #2 actual results


Capability Study

Recommended minimum Cpk \geq 1.33

Leverage Data to "Tighten Fence"

Defects are in or around heat seal machine #2...



Output: Factual Is/Is Not Diagram

	ls	Verified	Is Not	Verified
	What specific object has the defect?		What similar objects could have the defect but don't?	
	Syringe pouch seals	~	Surgeon glove pouch seals	~
	What is the specific defect?		What other defects could be seen but aren't?	
	Seals are open or failing the pull test	√	Tears, holes, product in seal, etc.	~
What	What are the defect characteristics?		What could the characteristics be but aren't?	
3	Failing 10 lb requirement, excessive variation	√	Failing 20 lb requirement, acceptable variation	~
	What product lots have the defect?		What product lots could have the defect but don't?	
	SY217, SY218SY235	√	SY216 and earlier	~
	Are any part lots associated with the defect?		What part lots could be associated with the defect but aren't?	
	None	√	None	~
	Where is the defective object observed geographically?		Where could the defective object be observed geographically but isn't?	
	All 30 NA regions (CA, US, MX) Johnsville facility	√	Single country, some sales regions Janesville facility	~
	Where is the defect on the object?		Where could the defect be on the object but isn't?	
e	Final seal (1), entire seal	~	Supplier's seals (3), part of the seal	✓
Where	Where is the defect 1 st seen in the process?		Where could the defect 1 st be seen in the process but isn't?	
	After heat sealing	√	Before heat sealing	~
	Where else is the defect?		Where else could the defect be but isn't?	
	Production line 3 Johnsville		Production lines 1, 2, and 4 in Johnsville	~
	Heat seal machine #2		Heat seal machine's 1 and 3	
	When was the defective object 1 st seen (date/time)?		When could the defective object 1 st been seen but wasn't?	
When	April 6 th at 10:00 a.m.	√	Before April 6 th at 10:00 a.m.	✓
Ň	When since the 1 st time has the defective object been seen?		When since the 1 st time could the defective object been seen but wasn't?	
	Continuously every day	√	Every other day, sporadic, some other pattern	\checkmark

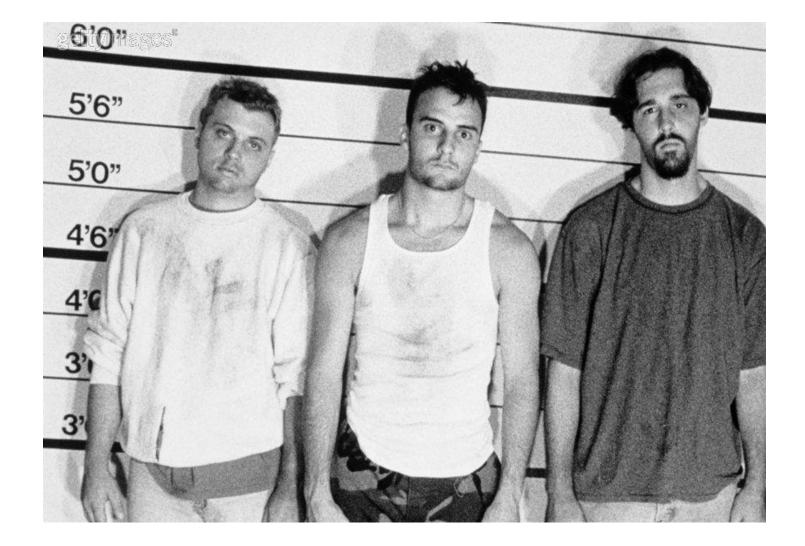
Collect Data: Key Points

Leverage subject matter experts from <u>outside the</u> <u>investigation team</u> to help determine information needed, analyze data, identify patterns, etc

Collect Data: Key Points

- Whenever possible, collect data from:
 - Actual place where the work is being conducted
 - Actual people executing the work
 - Real time as the problem is occurring
- Critical thinking to determine additional data needed

Documentation


- Data collection plan
- Factual Is/Is Not diagram

Strongly recommended

• Data analysis tools

Leverage whatever is appropriate

Step 3: Identify Possible Causes

Input	Process	Output
Factual Is/Is Not	Timeline of changes	Possible causes
diagram	Differences & changes	
Flow diagram with inputs	Review risk analysis	
	Cause & effect diagram	
	Brainstorming techniques	

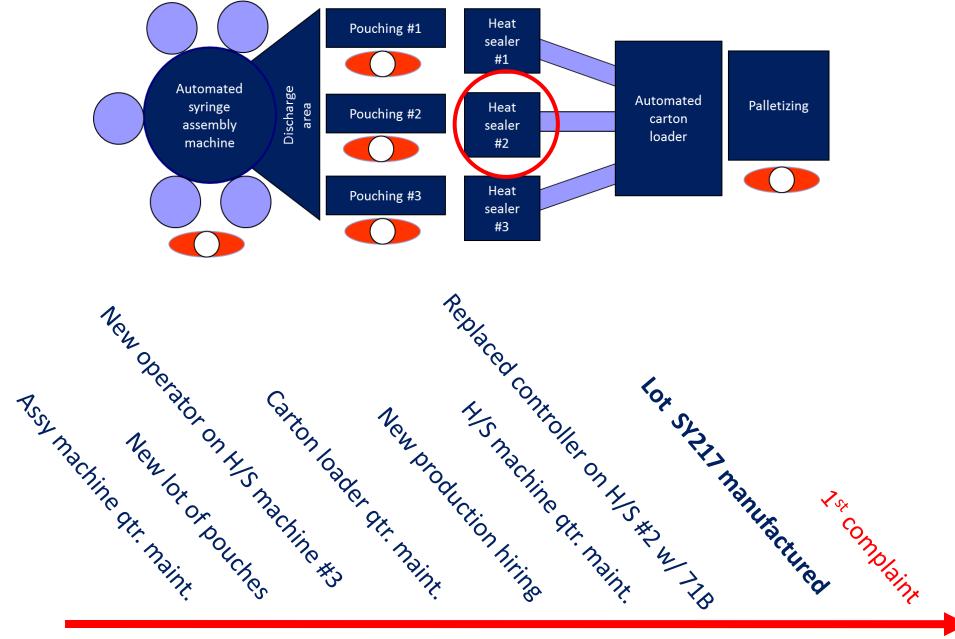
Identify Possible Causes: Key Points

- The investigation will fail if the real root cause isn't identified
- Develop a <u>robust</u> list of possible causes to ensure success


Identify Possible Causes: Key Points

- Knowledge gained from Steps 1 and 2 will generate possible cause ideas
- Past experiences of investigation team members will generate possible cause ideas
- <u>More</u> strategies should be leveraged to ensure success

Timeline of Changes


- The problem was caused by 1 or more changes....
- List all known relevant changes in chronological order: each change identified becomes a possible cause

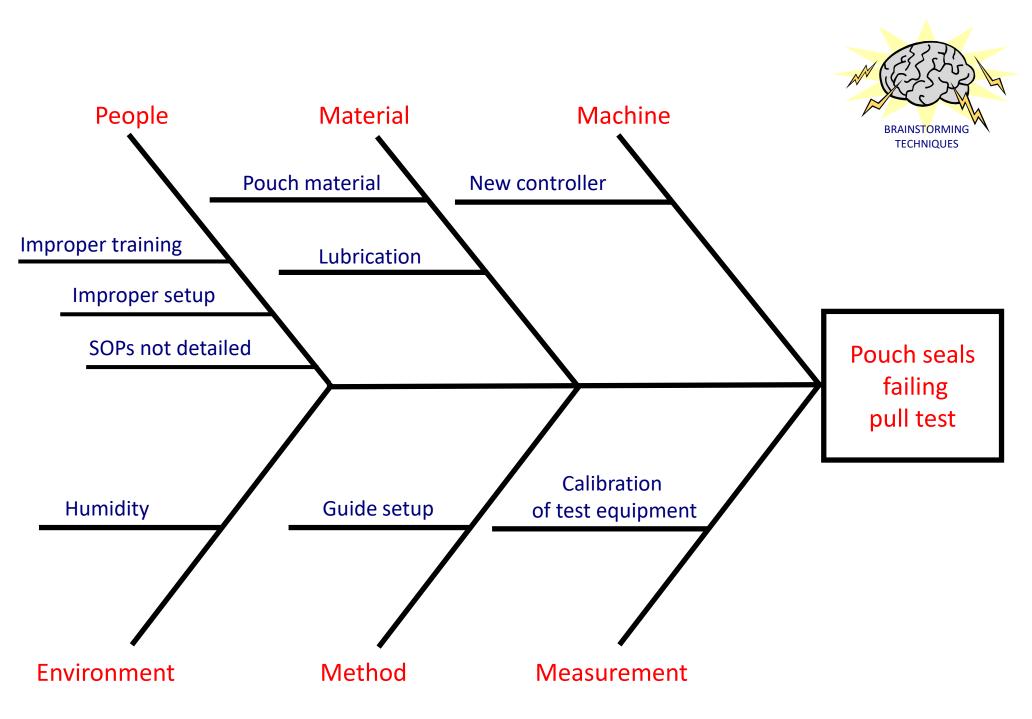
Differences Between Is and Is Not Facts

		<u> </u>			
	ls	Verified	Is Not	Verified	Differences
	What specific object has the defect?		What similar objects could have the defect but don't?		
	Syringe pouch seals	√	Surgeon glove pouch seals	√	Material composition
	What is the specific defect?		What other defects could be seen but aren't?		
What	Seals are open or failing the pull test	√	Tears, holes, product in seal, etc.	√	
\$	What are the defect characteristics?		What could the characteristics be but aren't?		
	Failing 10 lb requirement, excessive variation	√	Failing 20 lb requirement, acceptable variation	✓	
	What product lots have the defect?		What product lots could have the defect but don't?		
	SY217, SY218SY235	✓	SY216 and earlier	✓	
	Are any part lots associated with the defect?		What part lots could be associated with the defect but aren't?		
	None	✓	None	✓	
	Where is the defective object observed geographically?		Where could the defective object be observed geographically but isn't?		
	All 30 NA regions (CA, US, MX) Johnsville facility	~	Single country, some sales regions Janesville facility	~	Highly automated
	Where is the defect on the object?		Where could the defect be on the object but isn't?		
Where	Final seal (1), entire seal	✓	Supplier's seals (3), part of the seal	✓	
5	Where is the defect 1 st seen in the process?		Where could the defect 1 st be seen in the process but isn't?		
	After heat sealing	✓	Before heat sealing	✓	
	Where else is the defect?		Where else could the defect be but isn't?		
	Production line 3 Johnsville	~	Production lines 1, 2, and 4 in Johnsville	~	Training line
	Heat seal machine #2		Heat seal machine's 1 and 3		Operator, location, 71B controller

Changes Made to Identified Differences

Changes Made to Identified Differences

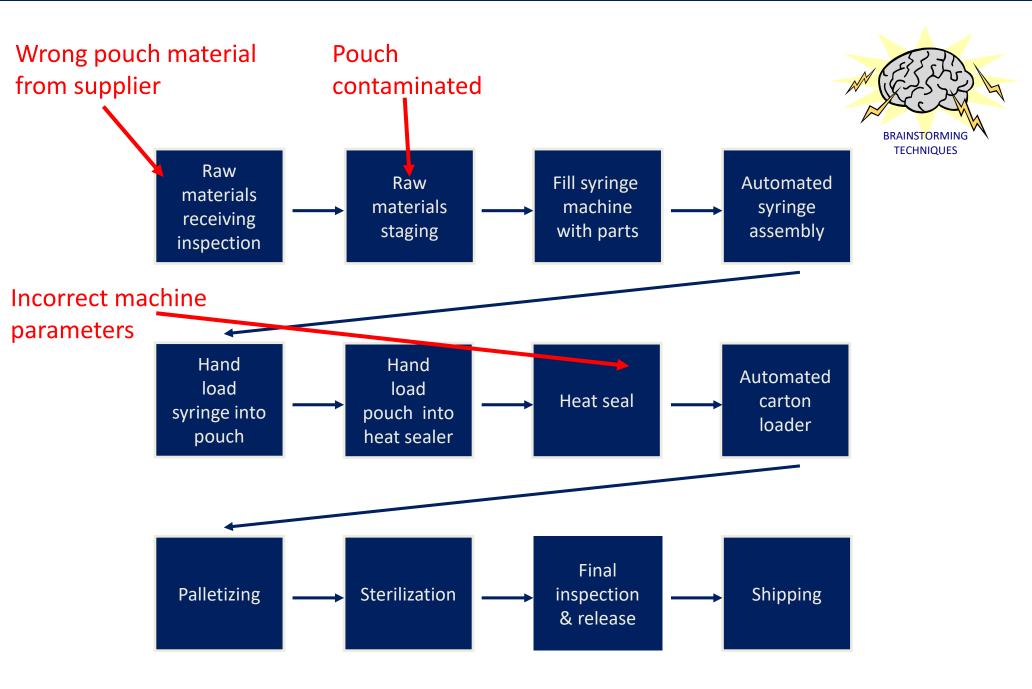
	ls	Verified	Is Not	Verified	Differences	Changes
What	What specific object has the defect?		What similar objects could have the defect but don't?			
	Syringe pouch seals	√	Surgeon glove pouch seals	√	Material composition	Changed material Feb 25
	What is the specific defect?		What other defects could be seen but aren't?			
	Seals are open or failing the pull test	~	Tears, holes, product in seal, etc.	√		
	What are the defect characteristics?		What could the characteristics be but aren't?			
	Failing 10 lb requirement, excessive variation	~	Failing 20 lb requirement, acceptable variation	~		
	What product lots have the defect?		What product lots could have the defect but don't?			
	SY217, SY218SY235	\checkmark	SY216 and earlier	\checkmark		
	Are any part lots associated with the defect?		What part lots could be associated with the defect but aren't?			
	None	\checkmark	None	\checkmark		
Where	Where is the defective object observed geographically?		Where could the defective object be observed geographically but isn't?			
	All 30 NA regions (CA, US, MX) Johnsville facility	~	Single country, some sales regions Janesville facility	~	Highly automated	None
	Where is the defect on the object?		Where could the defect be on the object but isn't?			
	Final seal (1), entire seal	\checkmark	Supplier's seals (3), part of the seal	\checkmark		
	Where is the defect 1 st seen in the process?		Where could the defect 1 st be seen in the process but isn't?			
	After heat sealing	\checkmark	Before heat sealing	\checkmark		
	Where else is the defect?		Where else could the defect be but isn't?			
	Production line 3 Johnsville	~	Production lines 1, 2, and 4 in Johnsville	~	Training line	New hires March 26
	Heat seal machine #2		Heat seal machine's 1 and 3		Operator, location, 71B controller	Assigned March 28


Review Risk Analysis

 Risk analysis may reveal a problem similar to the one being investigated, in which case potential failure modes and/or causes would have been identified


Example: Failure Mode and Effects Analysis (FMEA)

Item or Process	Item or Step	Potential	Potential effect	Potential Cause
Step	Function	Failure Mode		of Failure
 Load pouch into heat seal machine 	 Proper orientation of pouch into heat seal machine 	- <u>Incorrect</u> <u>pouch</u> <u>orientation</u>	 Seal incorrect area Product damage Incomplete seal across pouch 	- <u>Improper</u> <u>training</u> - <u>Improper</u> guide setup


Brainstorming: Cause & Effect Diagram

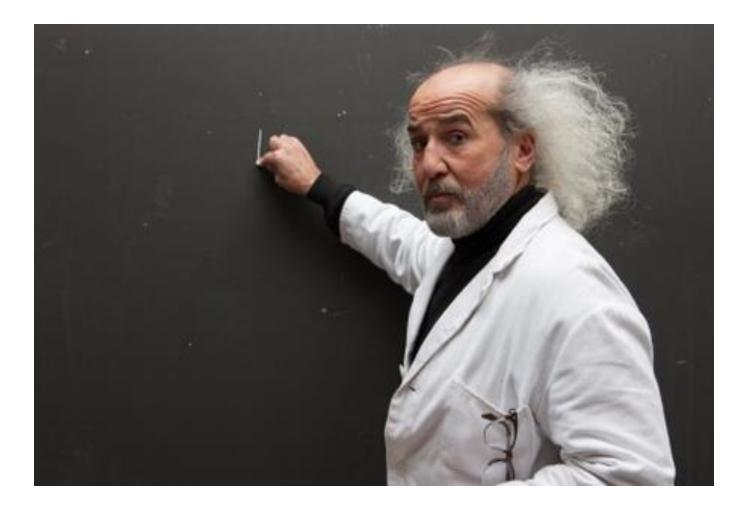
Brainstorming: Cause & Effect Diagram

Brainstorm: Process Flow Diagram(s)

Brainstorming: Other Techniques

Technique

- Share ideas out loud with group
- Share ideas anonymously with group



- Brainstorming rules, regardless of technique:
- Determine which method of brainstorming is most appropriate
- Record all ideas
- Do not debate ideas

Identify Possible Causes: Key Points

Leverage subject matter experts from <u>outside the</u> <u>investigation team</u> to help identify possible causes

Documentation

- Timeline of changes
- Differences and changes
- Risk analysis review
- Master list of possible causes

Strongly recommended

• Brainstorming techniques

Leverage whatever is appropriate

Step 4: Test Possible Causes

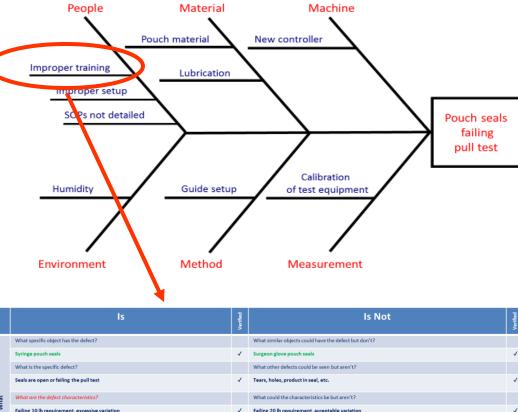
Test Possible Causes

Input

Process

Output

Factual Is/Is Not diagram


Robust list of possible causes

Test possible causes against facts

Reduced list of probable causes

Test Possible Causes

Test each possible cause...

...against each set of facts in the Is/Is Not diagram

		ş		Š
	What specific object has the defect?		What similar objects could have the defect but don't?	
	Syringe pouch seals	~	Surgeon glove pouch seals	~
	What is the specific defect?		What other defects could be seen but aren't?	
	Seals are open or failing the pull test	1	Tears, holes, product in seal, etc.	~
What	What are the defect characteristics?		What could the characteristics be but aren't?	
3	Failing 10 lb requirement, excessive variation	~	Failing 20 lb requirement, acceptable variation	~
	What product lots have the defect?		What product lots could have the defect but don't?	
	SY217, SY218SY235	~	SY216 and earlier	~
	Are any part lots associated with the defect?		What part lots could be associated with the defect but aren't?	
	None		None	~
	Where is the defective object observed geographically?		Where could the defective object be observed geographically but isn't?	
	All 30 NA regions (CA, US, MX) Johnsville facility	~	Single country, some sales regions Janesville facility	~
	Where is the defect on the object?		Where could the defect be on the object but isn't?	
e	Final seal (1), entire seal	~	Supplier's seals (3), part of the seal	~
Where	Where is the defect 1 [#] seen in the process?		Where could the defect 1 [#] be seen in the process but isn't?	
-	After heat sealing	~	Before heat sealing	~
	Where else is the defect?		Where else could the defect be but isn't?	
	Production line 3 Johnsville	~	Production lines 1, 2, and 4 in Johnsville	~
	Heat seal machine #2		Heat seal machine's 1 and 3	
	When was the defective object 1 st seen (date/time)?		When could the defective object 1" been seen but wasn't?	
When	pril 6 th at 10:00 a.m.		Before April 6 th at 10:00 a.m.	~
×	When since the 1st time has the defective object been seen?		When since the 1^{st} time could the defective object been seen but wasn't?	
	Continuously every day	1	Every other day, sporadic, some other pattern	~

Testing formula:

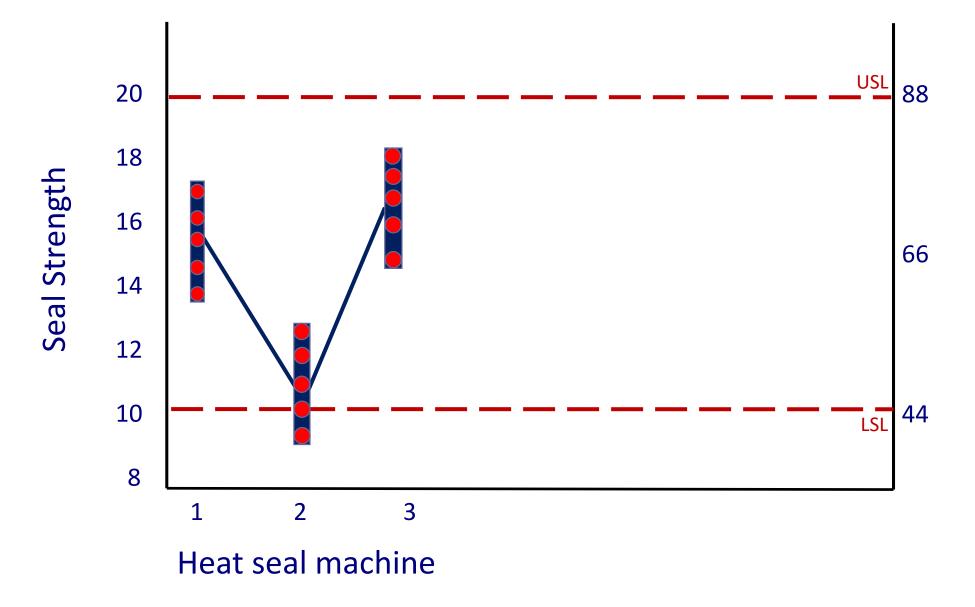
If x is the cause, <u>how</u> does it explain each set of Is and Is Not facts?

Example:

If the new 71B controller installed on heat seal machine #2 the evening of April 5 is causing the pouch seal failures, how does it explain...

Test Sheet

	ls	Verified	Is Not	Verified	Fact(s) Support Cause Y/N	Fact(s) Not Explained	Assumptions
Vhat	has the defect?		What similar objects could have the defect but don't?				
5	Syringe pouch seals	\checkmark	Surgeon glove pouch seals	\checkmark	Y		


If the new 71B controller installed on heat seal machine #2 the evening of April 5 is causing the pouch seal failures, how does it explain...

	ls	Verified	Is Not	Verified	Fact(s) Support Cause Y/N	Fact(s) Not Explained	Assumptions
u	When was the defective object 1 st seen (date/time)?		When could the defective object 1 st been seen but wasn't?				
When	April 6 th at 10:00 a.m.	~	Before April 6 th at 10:00 a.m.	~	Ν	Seal strength 1 st changed at 10:00 a.m. on April 6 th	Historical sampling plan wasn't robust enough

Test Sheet

Multi-Vari Chart

Heat seal machine #2 actual results

Test Possible Causes

If a change in sterilization is causing the pouch seal failures, how does it explain...

Test Sheet

	ls	Verified	ls Not	Verified	Fact(s) Support Cause Y/N	Fact(s) Not Explained	Assumptions
re	Where is the defect 1 st seen in the process?		Where could the defect 1 st be seen in the process but isn't?				
Where	After heat sealing	~	Before heat sealing	~	Ν	Defective seals 1 st identified after heat sealing	None

Test Possible Causes

If a inadequate operator training is causing the pouch seal failures, how does it explain...

Fact(s) Not Verified Verified Fact(s) Support S Is Not Assumptions Cause **Explained** Y/N Where else could the Where else is the defect? defect be but isn't? Issue only occurs at **Operator working** Ν Heat seal machine #2 \checkmark Heat seal machine's \checkmark heat seal machine machine #2 has 1 and 3 **#2...all 3 operators** different learning Where had exact same needs training at same time No problems from Less supervision March 28th – April starting April 6th 5th

Test Sheet

Contradiction Matrix

Problem Statement: Syringe pouch seals are either open or failing the 10 lb pull test

Facts Possible Causes	Syringe vs. surgeon glove pouches	Open or failing seals vs. tears, holes, etc	Failing 10 lb vs. 20 lb spec	SYS17 – present vs earlier lots	All sales regions vs. select regions	Johnsvil le vs. Janesvill e	Final seal vs. supplier's seals	After heat sealing vs. before	Line 3 vs lines 1, 2, 4
71B Controller	0	А	А	0	0	0	0	0	0
Sterilization	Х								
Inadequate operator training	0	А	А	А	0	0	0	0	0
Humidity	А	0	0	А	0	0	А	0	Х
Test calibration equipment	A	0	0	Х					
O: Facts support ca	ause		X: Facts	contradict ca	use	A: Assumption			

Test Possible Causes: Key Points

- Possible causes must only be ruled out using <u>facts</u>
- Assumptions must be based on <u>real life experiences</u>

• Test sheet for each possible cause

Strongly recommended

Contradiction matrix

Step 5: Identify Technical & Systemic Root Causes

Identify Technical & Systemic Root Causes

Identify Technical Root Cause(s)

Assumptions

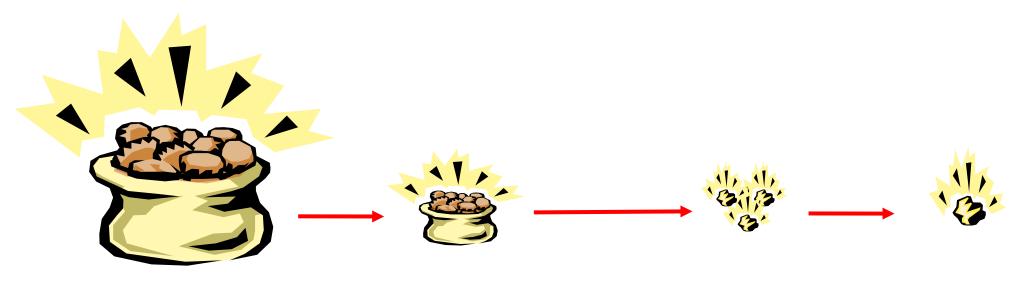
Collect data to verify assumptions made to help a probable cause explain the Is/Is Not facts

If the new 71B controller installed on heat seal machine #2 the evening of April 5 is causing the pouch seal failures, how does it explain...

	ls	Verified	ls Not	Verified	Fact (s) Sup port Cau se Y/N	Fact(s) Not Explained	Assumptions	Verification of Assumptions
	When was the defective object 1 st seen (date/time)?		When could the defective object 1 st been seen but wasn't?					
When	April 6 th at 10:00 a.m.	✓	Before April 6 th at 10:00 a.m.	✓	N	Seal strength 1 st changed at 10:00 a.m. on April 6 th	Historical sampling plan wasn't robust enough	Verified

Test Sheet

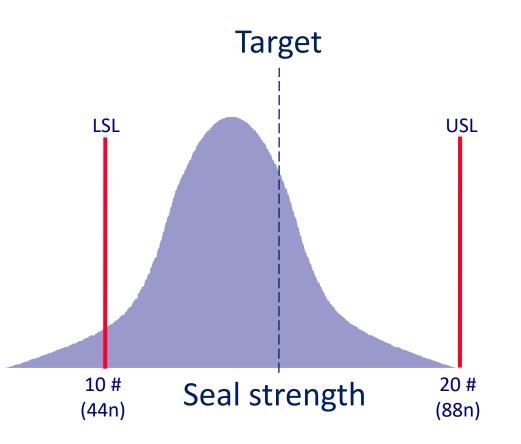
Verify Assumptions


If a inadequate operator training is causing the pouch seal failures, how does it explain...

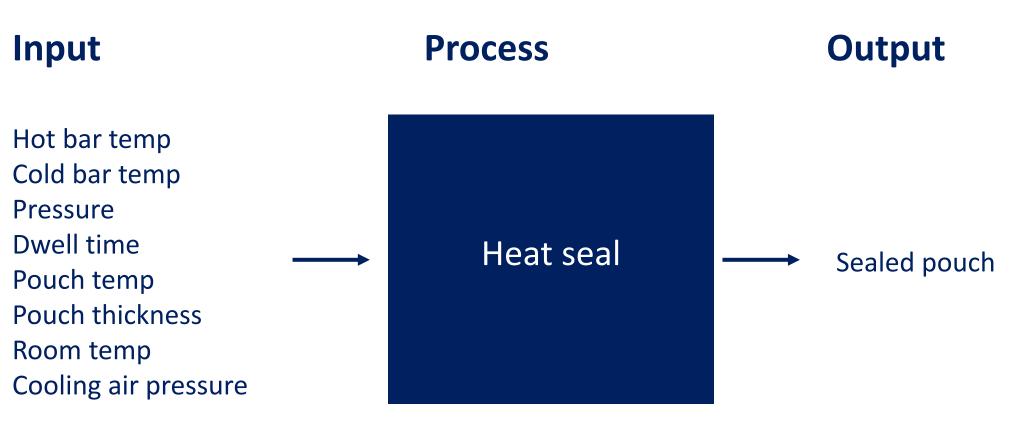
Fact(s) Verification of Fact(s) Not Verified Verified Is Not S Support **Assumptions** Cause **Explained** Assumptions Y/N Where else is Where else the defect? could the defect be but isn't? Heat seal \checkmark Heat seal \checkmark Ν Issue only occurs at **Operator working** Assumption false; the machine #2 machine's 1 and heat seal machine machine #2 has problem always **#2...all 3 operators** different learning 3 happens at machine #2 Where had exact same needs regardless of whose training at same working there time No problems from Less supervision March 28th – April starting April 6th ςth

Test Sheet

Identify Technical Root Cause(s)

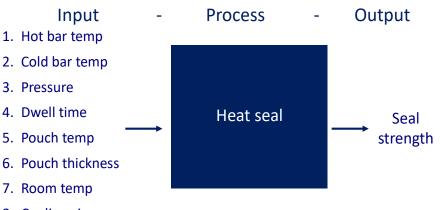

- A large list of possible causes has been reduced to a smaller list of probable causes
- Verifying assumptions may further reduce the list of probable causes
- Leverage experiments to find the technical root cause(s)

Identify Technical Root Cause(s)


Examples of experiments

Output Input **Process Probable causes** Component **Technical root** swapping study cause(s) Screening experiment **Response surface** studies **Robust tolerance** analysis

- Excessive variation
- Improper targeting


Causes for Excessive Variation

Excessive variation and/or improper targeting of 1 or more inputs may cause excessive variation and/or improper targeting of the output

Screening Experiment

- Identifies the <u>key</u> inputs that affect the output
- Used when there are numerous inputs (> 6) to dramatically reduce the amount of effort needed with a follow up response surface study

8. Cooling air pressure

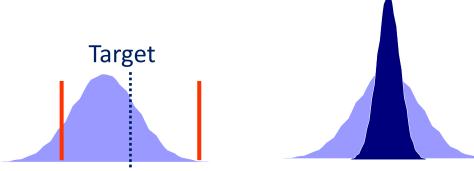
This type of experiment involves changing one or more inputs and measuring the resulting effect on one or more outputs

Screening Experiment

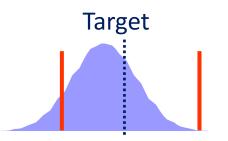
Results

- Some input variables have little or no effect on pouch seal strength
 - 1. Cold bar temperature
 - 2. Cooling air pressure
 - 3. Pouch thickness
 - 4. Room temperature

Other input variables do have an effect on pouch seal strength

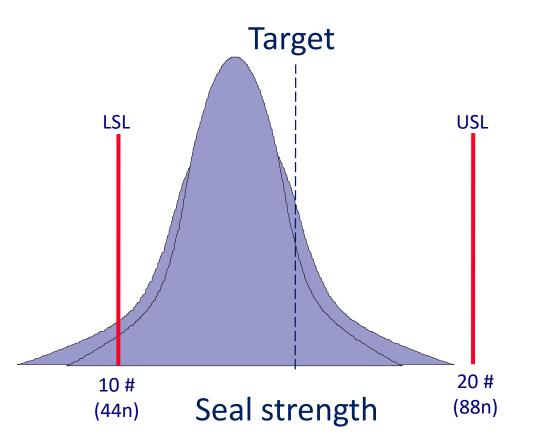

- 1. Hot bar temperature
- 2. Pressure
- 3. Dwell time
- 4. Pouch temperature

- Builds on the data from a screening experiment
- Determines the equation relating the inputs to the outputs
- Identifies the best set points of the inputs


Response Surface Studies

Results

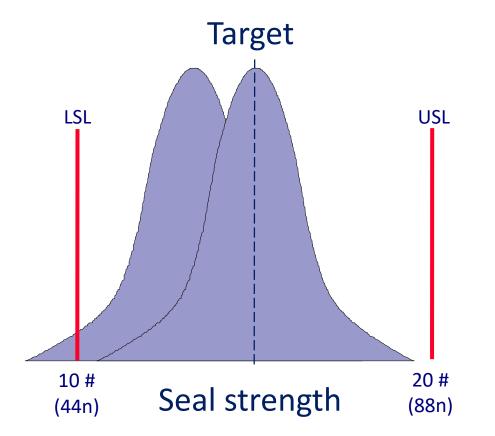
- 2 input variables affect both the seal strength average and the amount of variation
- Hot bar temperature
- Dwell time



- 2 other input variables affect only the seal strength average
- Pressure
- Pouch temperature

Response Surface Studies

First, reduce variation...

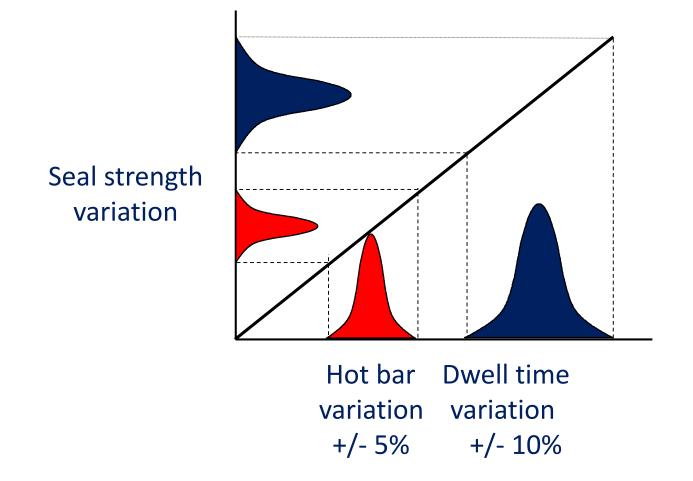


1. Set hot bar temperature to 200°F (93°C)

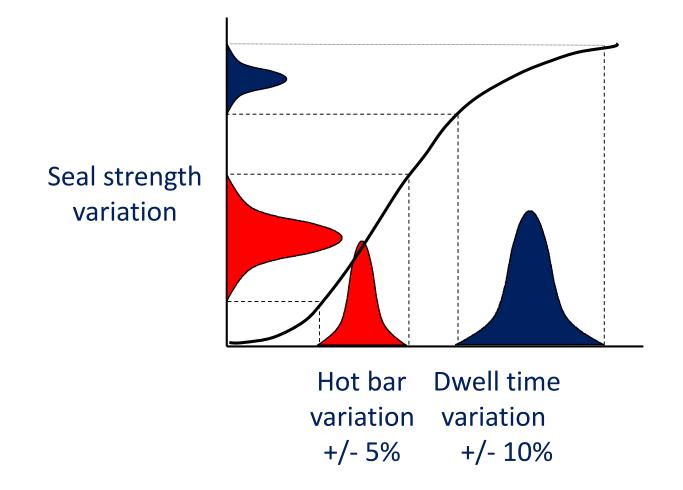
2. Set dwell time to .75 seconds

Response Surface Studies

Second, optimize variation...

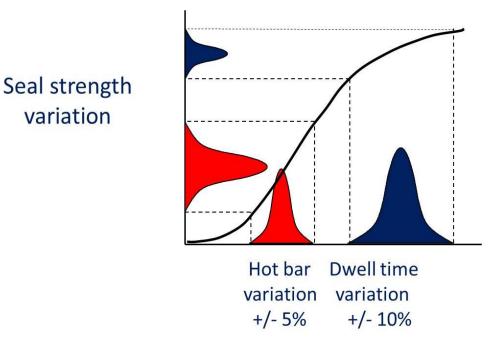


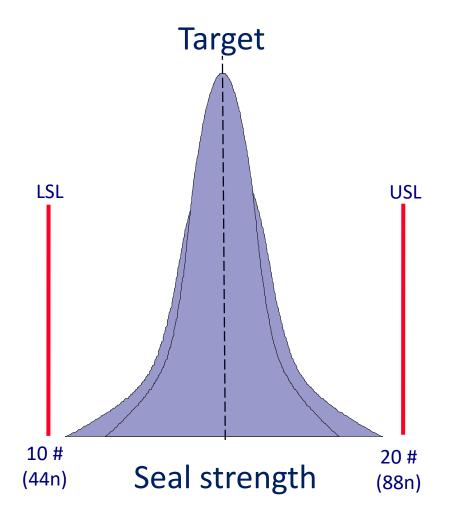
Options


 Adjust the pressure setting to 80 psi (550 kPa)

or

 Maintain the pouch temperature at 95° F (35°C) to center the process on the target

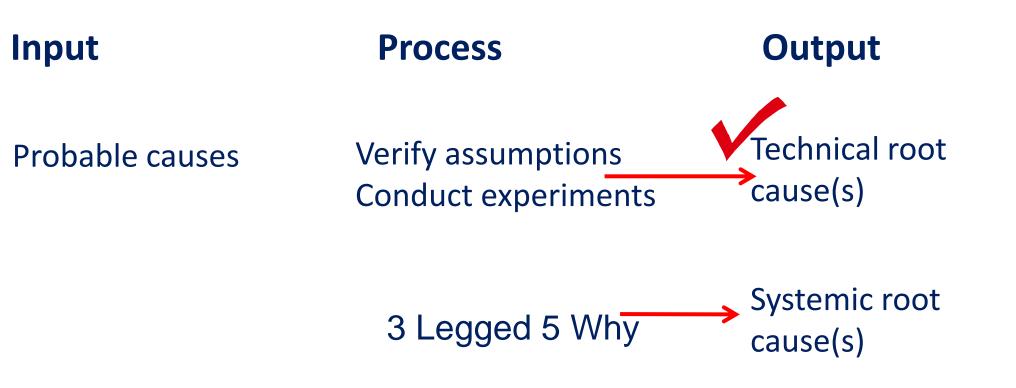



Effects of input variation on output variation

Effects of input variation on output variation

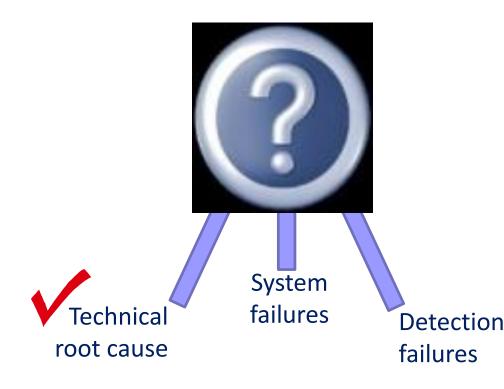
- The hot bar setting contributed more variation to seal strength than dwell time
- Reduce hot bar variation further by investing in a more capable controller

Purchase a controller capable of holding temperature at $200^{\circ}F$ $\pm 2\% (93^{\circ}C \pm 2\%)$


Identify Technical Root Cause(s): Key Points

Experiment: component swapping study

When, through experiments, the problem can be controlled, moved, manipulated, etc...the technical root cause <u>has been</u> <u>identified</u>



Identify Technical & Systemic Root Causes

Identify Systemic Root Cause(s)

- Asking "why" may uncover systemic root causes that:
- Allowed the change to occur
- Failed to detect the change

3L5WHY (3 Legged 5 Why's)

Identify Systemic Root Cause(s)

Detection failures

Why did this change occur?

The 71B controller was not capable of meeting process requirements

Why was a controller selected that wasn't capable?

Process needs weren't reviewed before a replacement was selected

Why weren't process needs reviewed?

Focus was on cost, 71B was less expensive

Why was focus on cost?

Bonus structure allowed people to prioritize cost over quality

Why did the system allow this to happen?

System Detection Technical Why didn't we detect the controller wasn't failures failures root cause capable? Process validation wasn't conducted Why wasn't process validation conducted? Validation department was unaware the control had been changed Why was the Validation Department unaware? Systems allowed the Mechanic to forgot to communicate Why did the systems allow this to happen? ???

Documentation

- Test sheet with verification of assumptions
- Experiments & results

Strongly recommended

3L5Why detailing technical & systemic root cause(s)

Step 6: Determine Corrective & Preventive Actions

Determine Corrective & Preventive Actions

Input

Technical & systemic root causes

Process

Mistake proofing vs. optimization & variation reduction (OVR)

Output

Corrective/preventive action(s)

FMEA Design verification Process validation **Risk mitigation**

Future monitoring

Control plan

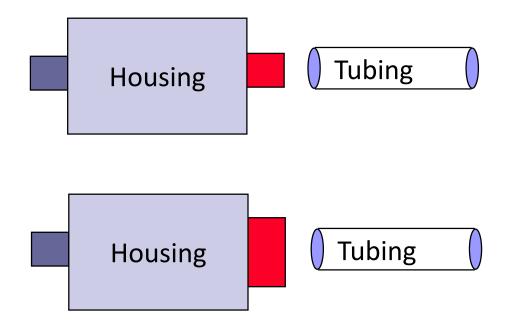
21 CFR 820.100(a)(3) Identifying the action(s) needed to correct and prevent recurrence of nonconforming product and other quality problems

Determine Corrective & Preventive Actions

All root causes will result from:

Human error

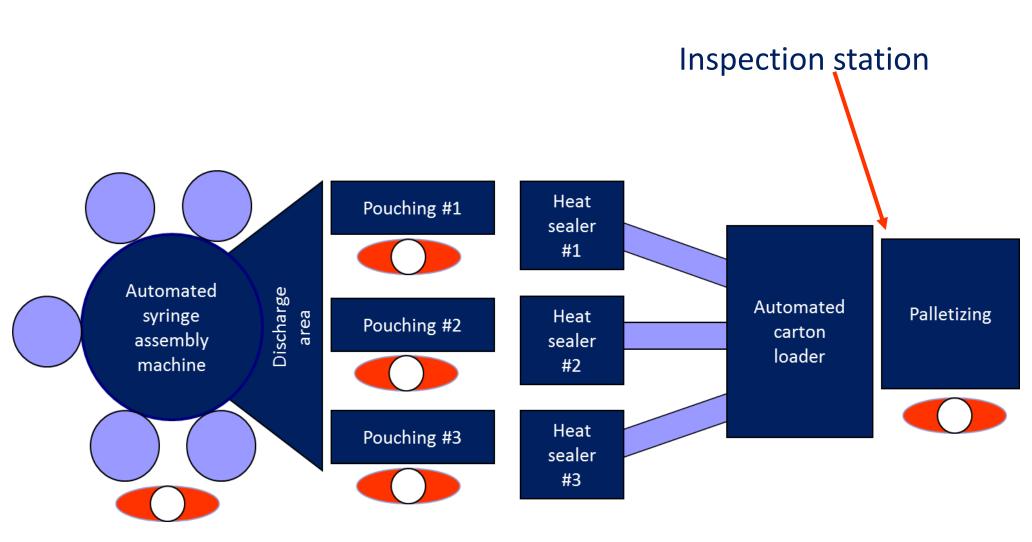
Too much variation


Mistake proofing

Optimization & variation reduction (OVR)

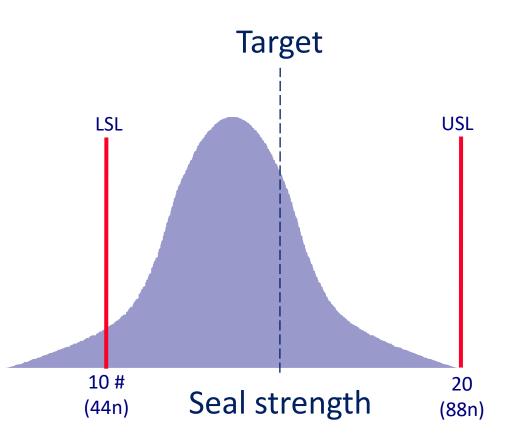
- Ensuring the problem...
- cannot occur again
- cannot get through our systems undetected

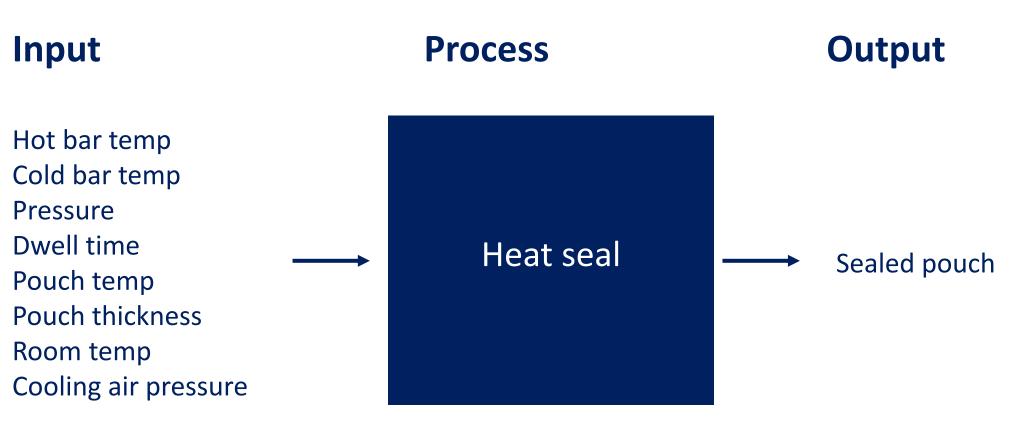
Eliminate: Make it impossible for the defect to occur


Example: Designing components so they can only be assembled the correct way

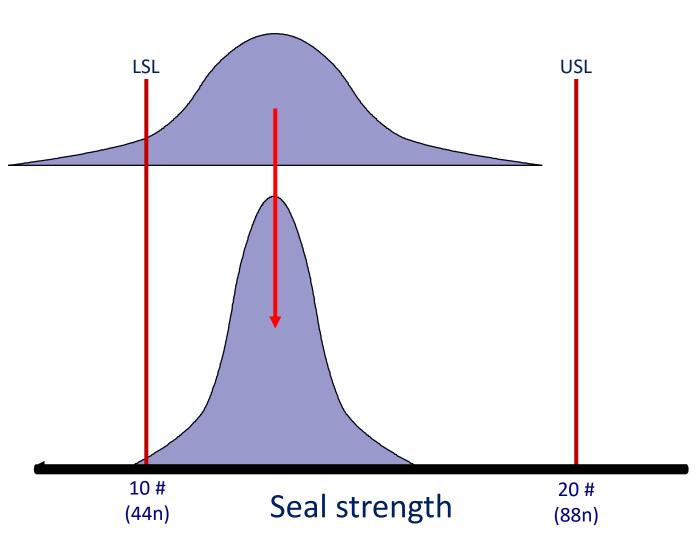
Facilitate: Reduce the probability of the defect occurring

Example: Double entries when establishing a new password to reduce the probability of a typing error

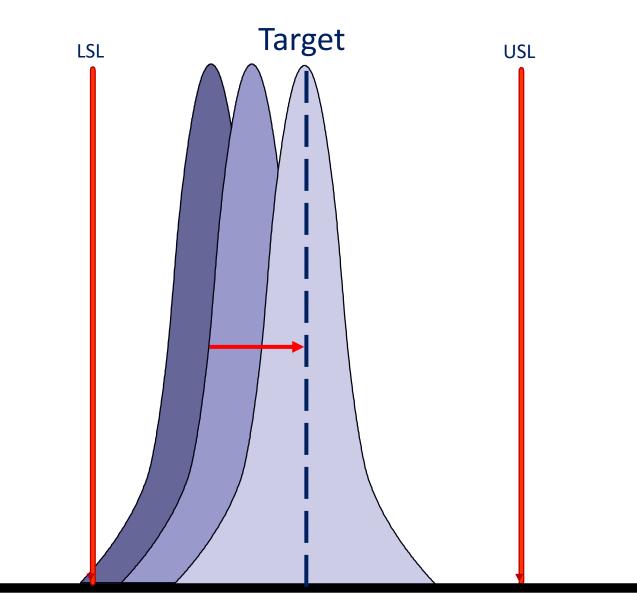

Flag: Implementing an inspection


Mitigation: Reduce the consequences of defect as it's occurring

Used when the defect cannot be controlled



- Excessive variation
- Improper targeting



Excessive variation and/or improper targeting of 1 or more inputs may cause excessive variation and/or improper targeting of the output

1st reduce performance variation...

2nd move performance as close to target as possible

Corrective & Preventive Action Plan (3L5Why)

Root Cause	Corrective Action	Risk Mitigation	Control Plan	Acceptance Criteria
<u>Technical</u> : Change to 71B controller	Replace with standard model controller historically leveraged			Defect rate returns to .01% for 3 consecutive, full production days
System: People overreacting to management stressing cost control	Mgmt to address balancing cost and quality at next all employee meeting			Conduct by 8/31
Detection: Mechanic forgot to communicate to Validation Dept	Revise maintenance electronic system to not allow mechanic to close out WO without sending change notice to Validation Dept			No communication failure in next 6 months

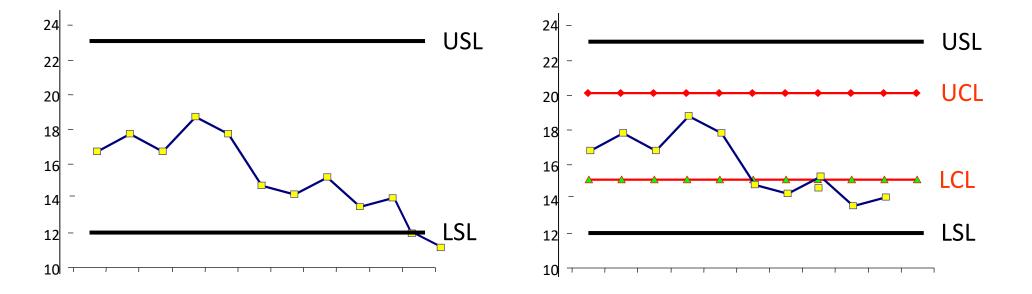
Risk Mitigation

Consider unintended consequences of the correction/preventive actions...

- Review risk analysis
 - FMEA, fault tree analysis, etc
- Repeat design verification studies
- Repeat process validation studies

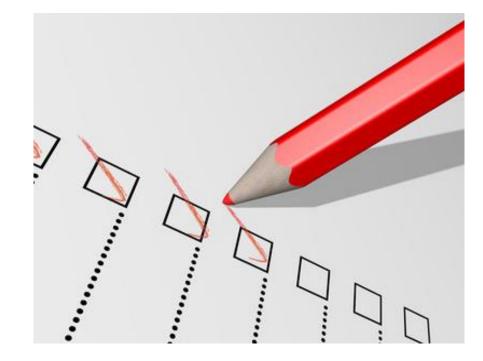
Corrective & Preventive Action Plan (3L5Why)

Root Cause	Corrective Action	Risk Mitigation	Control Plan	Acceptance Criteria
<u>Technical</u> : Change to 71B controller	Replace with standard model controller historically leveraged	Validate heat seal process		Defect rate returns to .01% for 3 consecutive, full production days
System: People overreacting to management stressing cost control	Mgmt to address balancing cost and quality at next all employee meeting	Front line mgrs stress importance at next team meeting		Conduct by 8/31
Detection: Mechanic forgot to communicate to Validation Dept	Revise maintenance electronic system to not allow mechanic to close out WO without sending change notice to Validation Dept	Validate electronic system		No communication failure in next 6 months

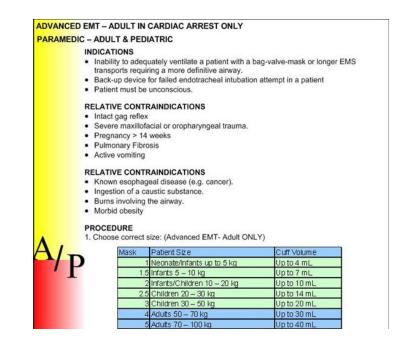

Ensure the problem remains fixed...

- <u>Before & after measurements</u>
- Monitoring performance
- Quality process checks
- Standardization

							CONT	ROL PL	.AN					
Process Project I	Name: D:	e:		Prepared by: Date: Approved by: Date: Process Owner: Page: of			_ Document No: Initiation Date: Revision No.: Revision Date:							
Process Step	CT		Specification Characteristic	1	cations	Unit of Measurement	Data Description	Measurement Method	Sample Size	Frequency of Measurement	Who Measures	Where Recorded	Corrective Action	Applicable Standard Operating
Polishing	KDIA X	КРОЧ	Outer Diameter	LSL 0.0004	USL 0.0006	mm	variables	Optical Comparator	10 parts / lot	Hourly	Operator	X-bar & R subgroup size = 10	Replace paper, retrain, check machine	Prodedure PM-005
Delivery		x	Customer specified due date	98%	100%	The time delivery enters truck	attributes (not late / late)	Late = 1Defect = 1Defective	Each Delivery	Each Delivery	Prod. Control	P Chart	Conduct 5-WHY	PC-001&PC-002


Monitor performance

• Early warning to minimize recurrence


Quality process checks (audits)...

• Checking process inputs to minimize non conformances

Standardization

- Ensuring important elements of a process are performed consistently
- Developing procedures:
 - Specify tasks and how they need to be executed
 - Provide direction when and how inputs are to be adjusted
 - Training

Corrective & Preventive Action Plan (3L5Why)

Root Cause	Corrective Action	Risk Mitigation	Control Plan	Acceptance Criteria
Technical: Change to 71B controller	Replace with standard model controller historically leveraged	Validate heat seal process	 Control chart each machine Same for all lines 	Defect rate returns to .01% for 3 consecutive, full production days
System: People overreacting to management stressing cost control	Mgmt to address balancing cost and quality at next all employee meeting	Front line mgrs stress importance at next team meeting	Electronic tracking of front line mgrs	Conduct by 8/31
Detection: Mechanic forgot to communicate to Validation Dept	Revise maintenance electronic system to not allow mechanic to close out WO without sending change notice to Validation Dept	Validate electronic system	Verify during internal audits	No communication failure in next 6 months

Documentation

Leverage the 3L5Why to document:

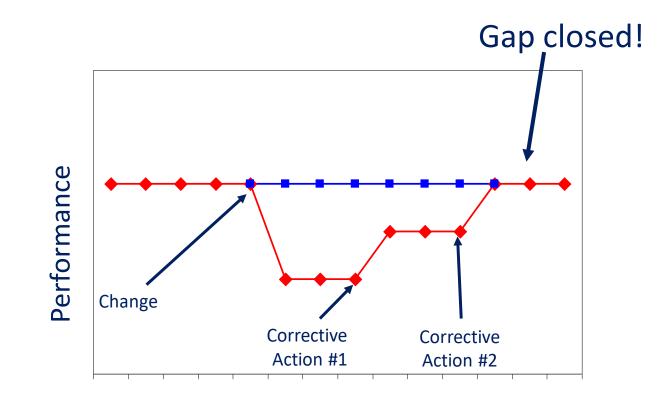
- Corrective/preventive actions plans for technical, systemic, and detection failures
- Risk mitigation for unintended consequences (leveraging appropriate techniques)
- Control plan to monitor corrective/preventive action plan performance
- Acceptance criteria to determine success

Strongly recommended

Step 7: Verify Corrective & Preventive Actions

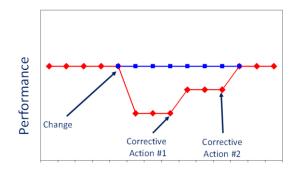
Verify Corrective & Preventive Actions

Input	Process	Output
Corrective/preventive actions	Implement	Technical problem disappears
	Measure	
	effectiveness	No new problems arise
	Ensure control plan is	
	working	Problem stays corrected
	Share the knowledge	


Verifying Corrective & Preventive Actions

Documenting that the corrective/preventive actions have been implemented

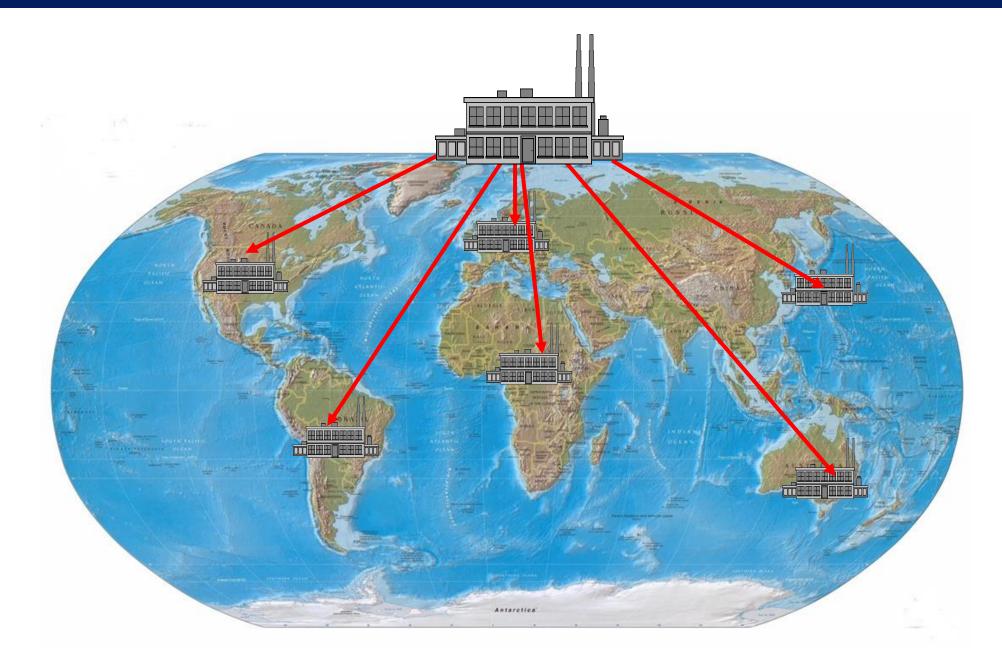
Validating Corrective & Preventive Actions


Demonstrating <u>with data</u> that the previous level of performance has been restored or the requirement is now being met (effectiveness checks)

Time

Validating Corrective & Preventive Actions

- If the performance gap persists...
- The corrective action may not have been completely effective
 - How was corrective action implemented?
 - How were effectiveness measures taken?
 - Does more need to be done?
- If the performance gap <u>still</u> persists...
- There must be more than 1 technical root cause
 - Assumptions may need to be reviewed to flush out a 2nd technical root cause
 - Go back to Step 3 to identify more possible causes and continue to follow the process


Root Cause	Corrective/Preven tive Action	Risk Mitigation	Control Plan	Acceptance Criteria	Actual Measure
Technical: Change to 71B controller	Replace with standard model controller historically leveraged	Validate heat seal process	 Control chart at each machine Same on all lines 	Defect rate return to .01% for 3 consecutive days	Defect rate ≥ .01%
System: People overreacting to management stressing cost control	Mgt to address at next all employee meeting	Dept. managers stress at following dept meeting	Electronic tracking of front line mgrs	Conduct by 8/31	Conducted on 8/27
Detection: Mechanic forgot to communicate to Validation Dept	Revise maint. system to not allow mechanic to close out WO without sending change notice to Validation Dept	Validate system	Verify during internal audits	No communication failure in next 6 months	No Failures

- Update risk analysis to reflect knowledge gained during the investigation
- If problem occurs again in the future, new investigation team should be able to resolve much more quickly

Failure Mode & Effects Analysis (FMEA)

Item or process step	Item/step function	Potential failure mode	Potential effect	Potential causes of failure
Stencil "For Demo Only" on flotation device	Identify flotation device to be used for demo	Incorrect paint	 Red sweat Itching / burning sensation 	 Improper training Forgets

Preventive Actions

Communicate lessons learned to appropriate parties

Root Cause	Corr. / Prev. Action	Acceptance Criteria	Actual Measure	Additional Prev. Actions
Technical: Change to 71B controller	Replace with standard model controller historically leveraged	Defect rate .01% for 3 consecutive days	Defect rate ≥ .01%	 Control chart at all heat seal stations Review with Janesville
System: People overreacting to management stressing cost control	Mgt to address at next all employee meeting	Conduct by 8/31	Conducted on 8/27	Review with Janesville facility
Detection: Mechanic forgot to transmit change notice to Validation Dept	Revise maint system so WO can't be closed out without sending change notice to Validation Dept	No communication failure in next 6 months	No Failures	Review with Janesville facility

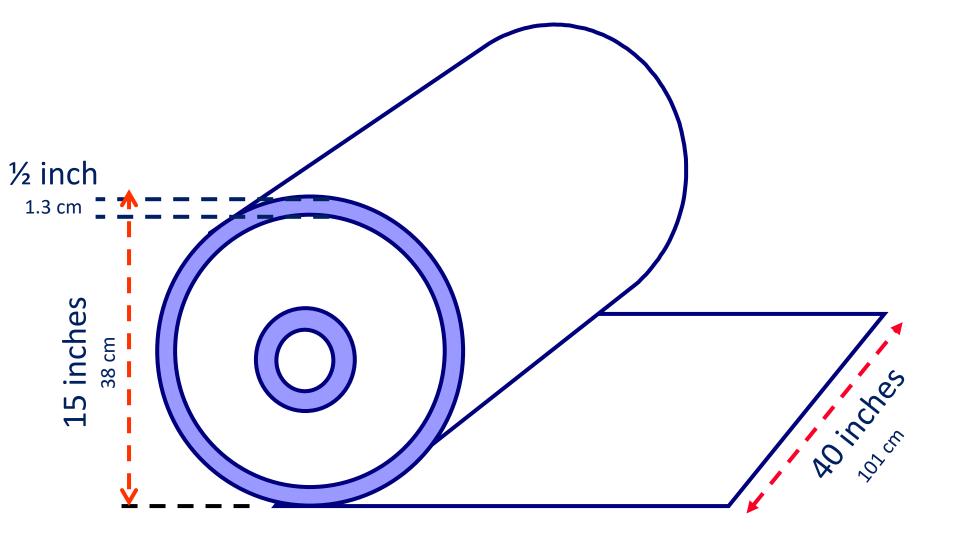
Leverage the 3L5Why to document:

 Verify the corrective/preventive actions have been implemented & documented

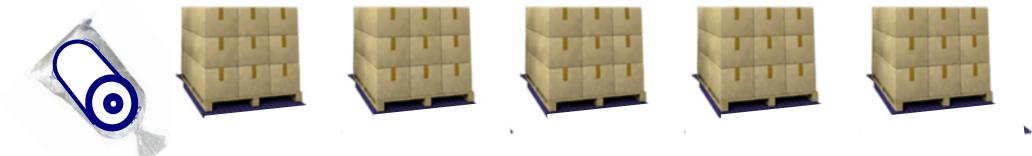
<u>Strongly</u> <u>recommended</u>

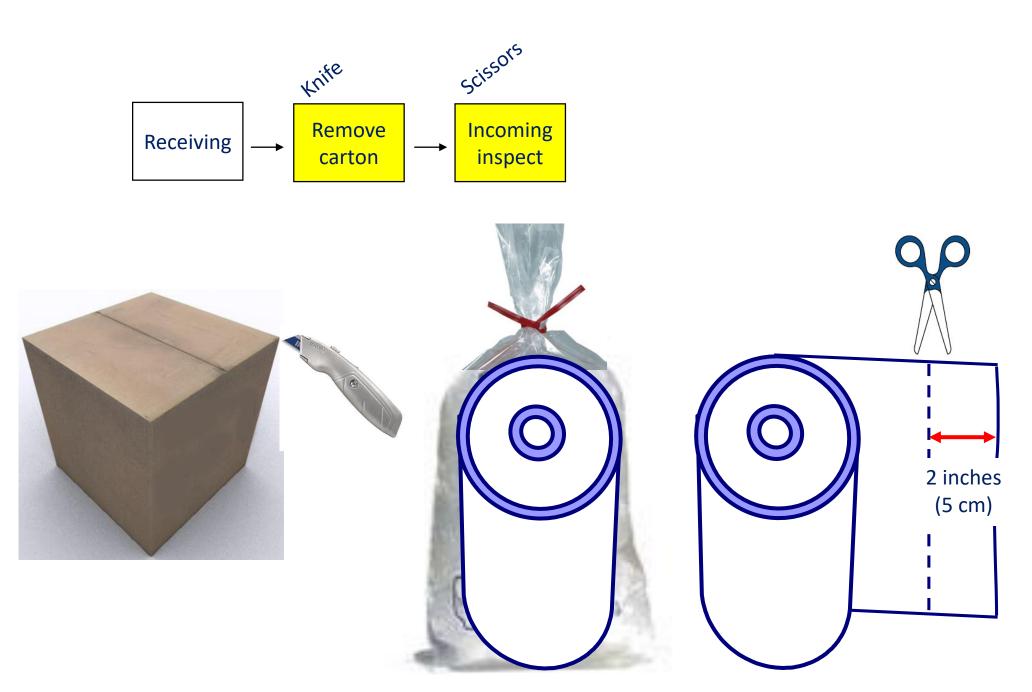
• Validate with data (effectiveness checks) that performance has been restored

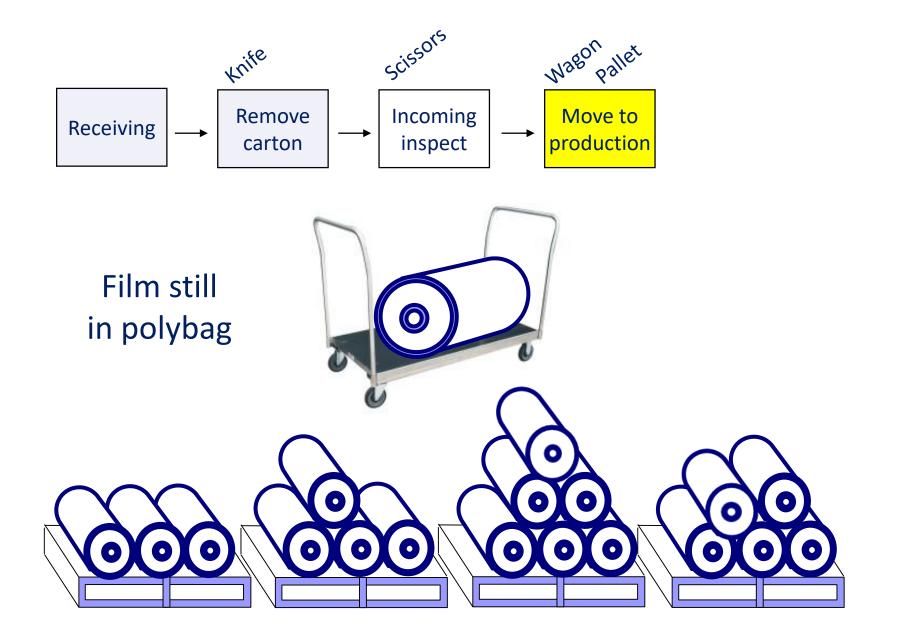
Verify Corrective & Preventive Actions

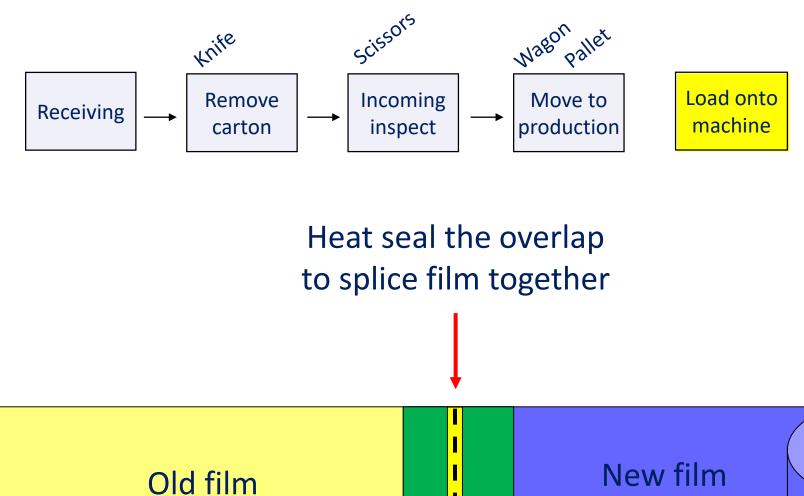

If the corrective/preventive actions were successful...

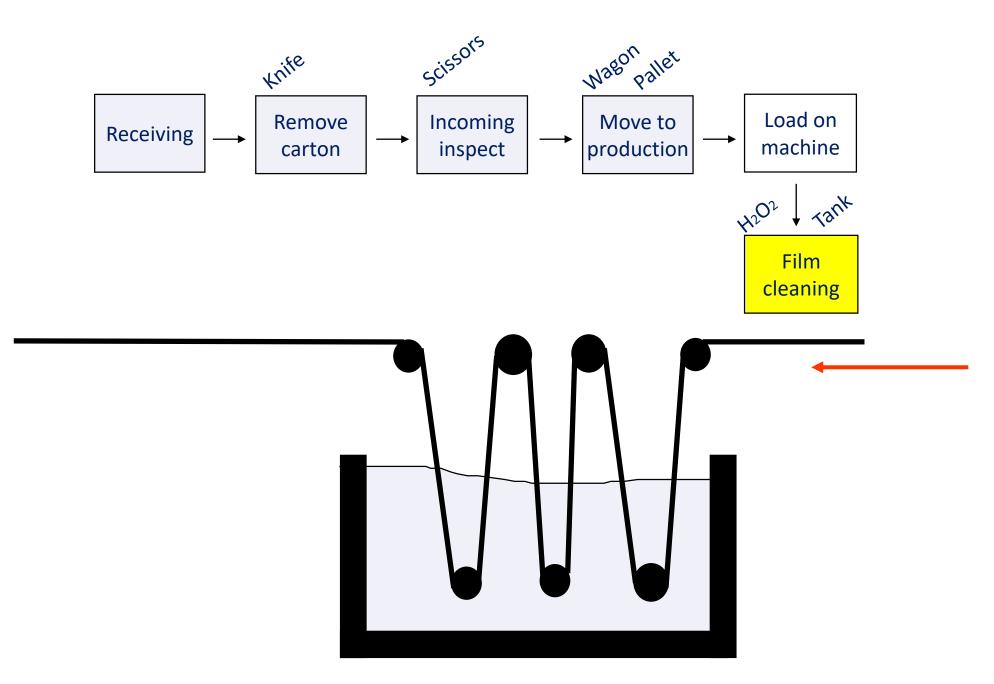
- The technical problem disappears
- No new problems arise
- Problem stays corrected

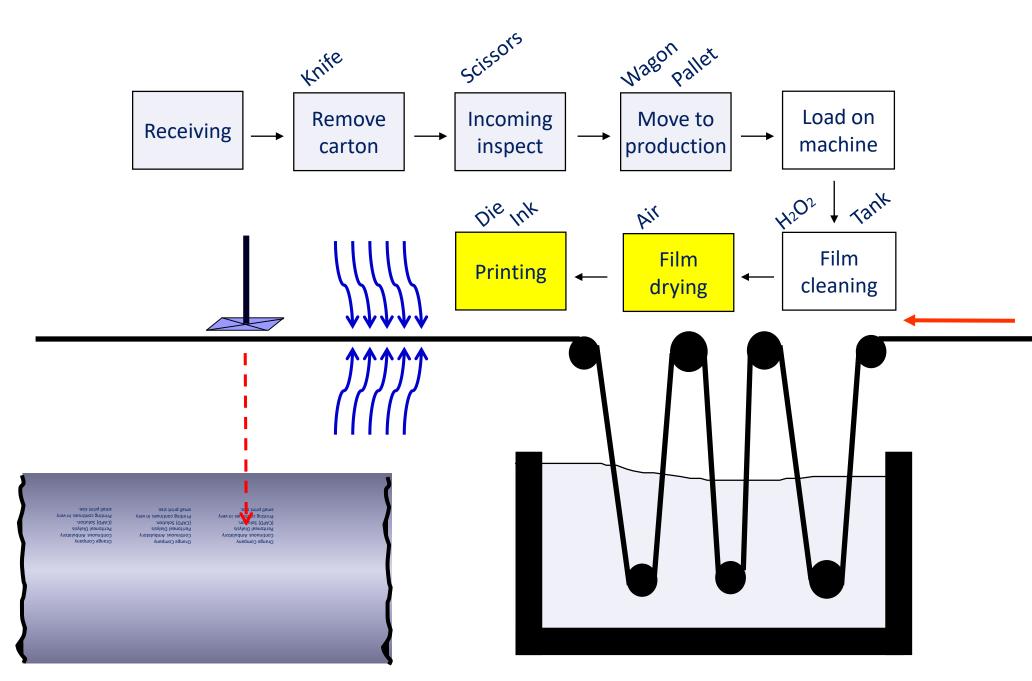

The Orange Company Case

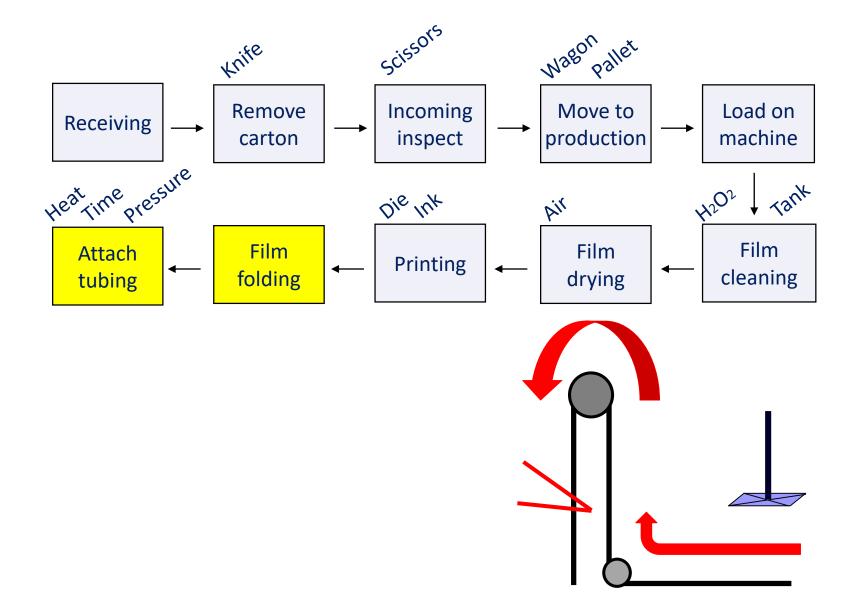

Film Dimensions

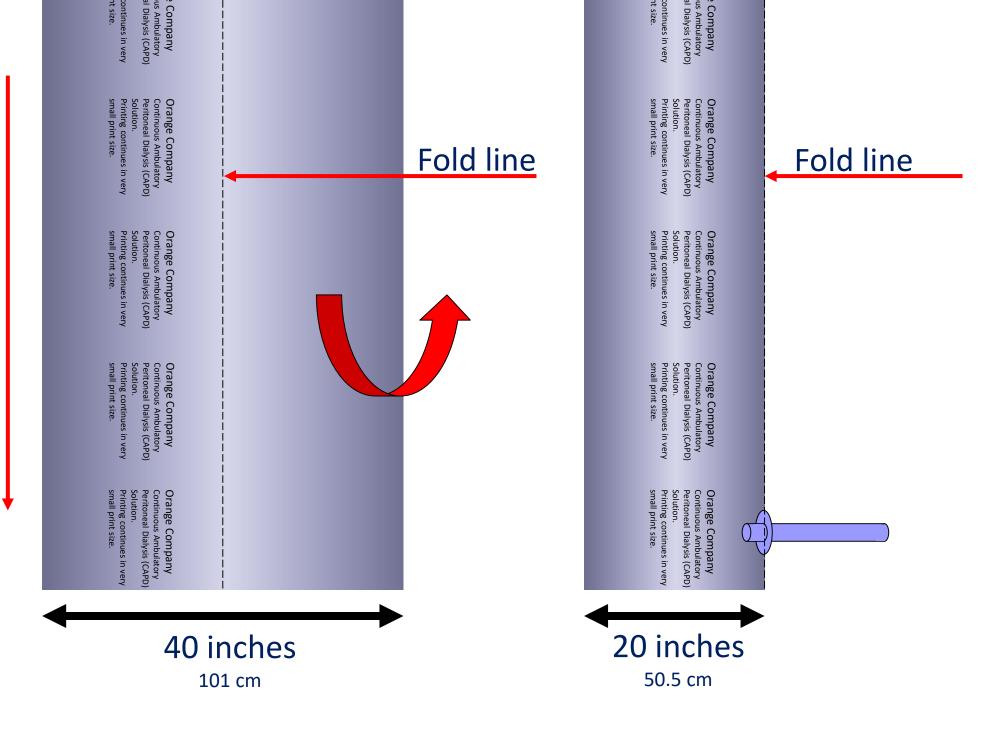


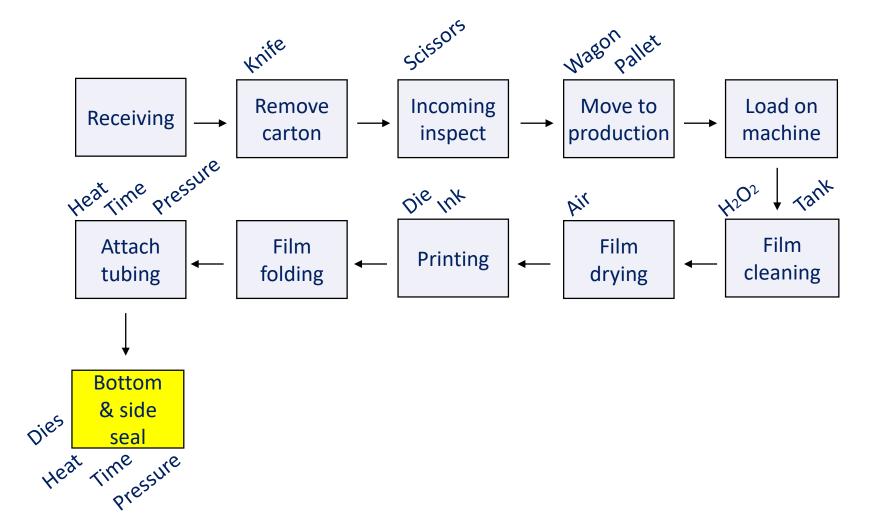

Receiving

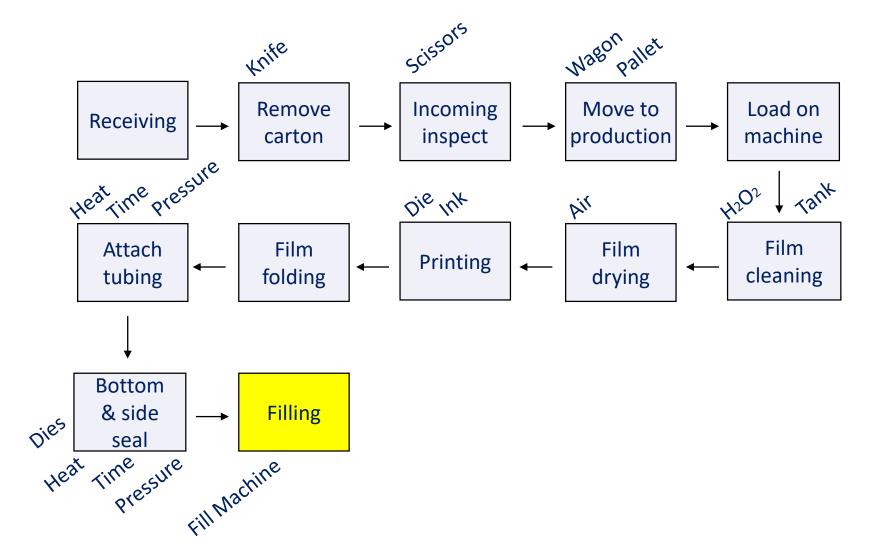


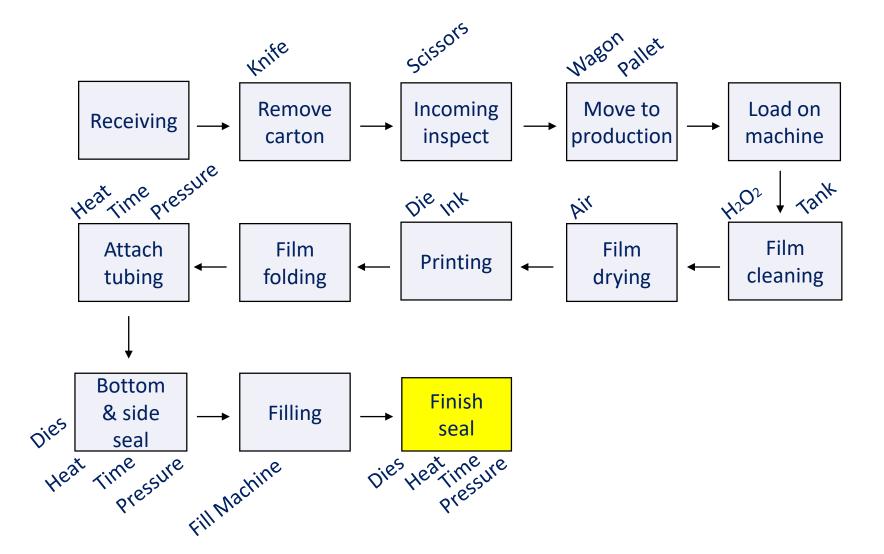

Each film shipment = 1 supplier/part lot = 5 pallets with 9 cartons/pallet

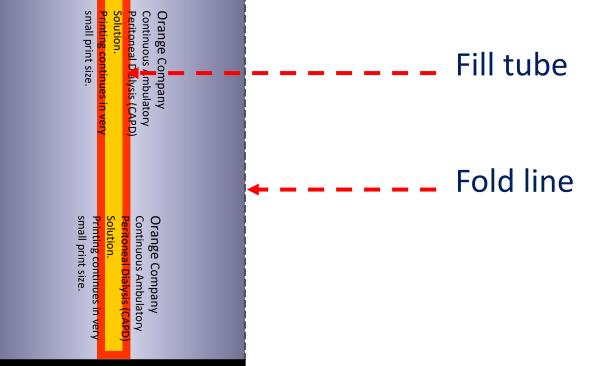




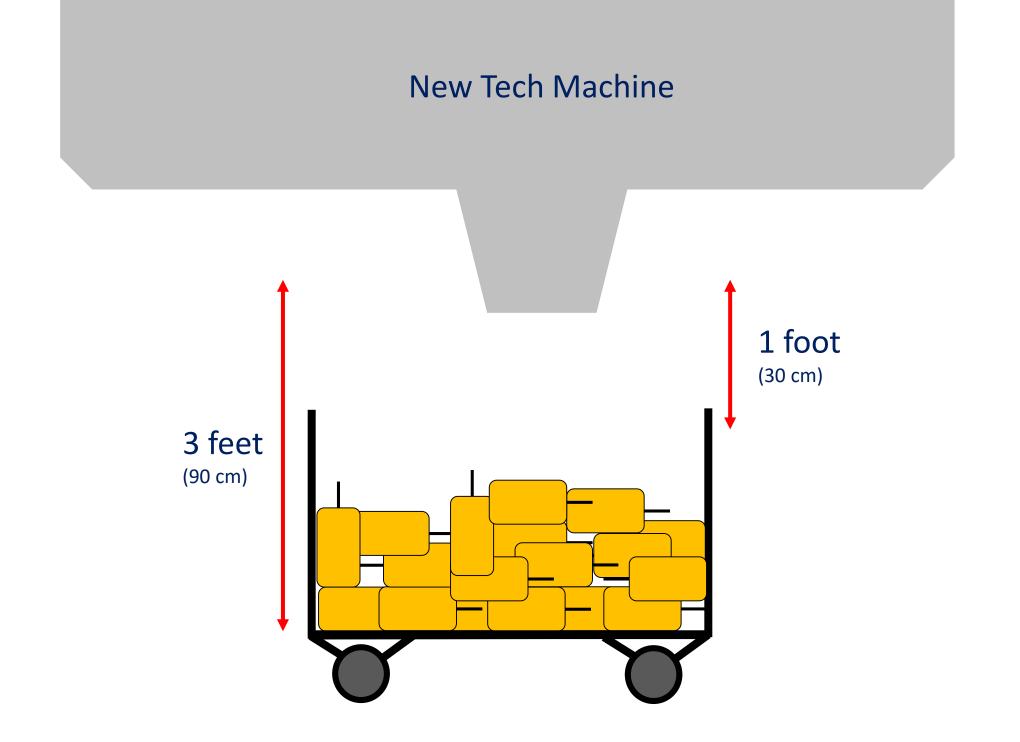


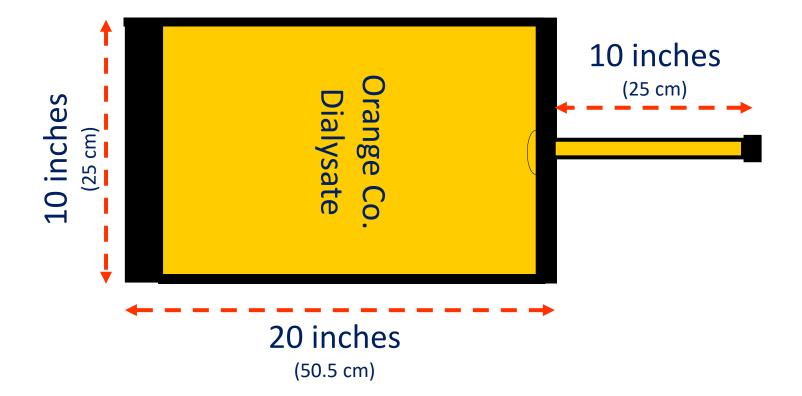


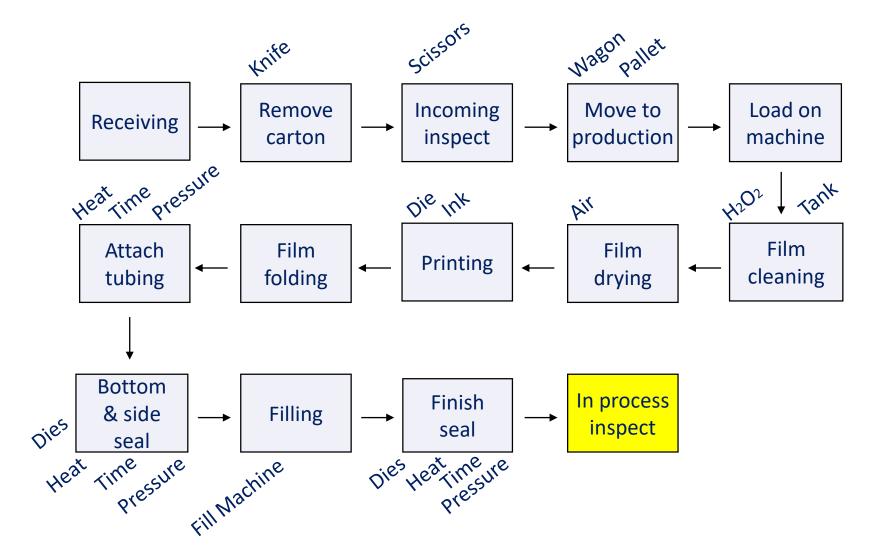


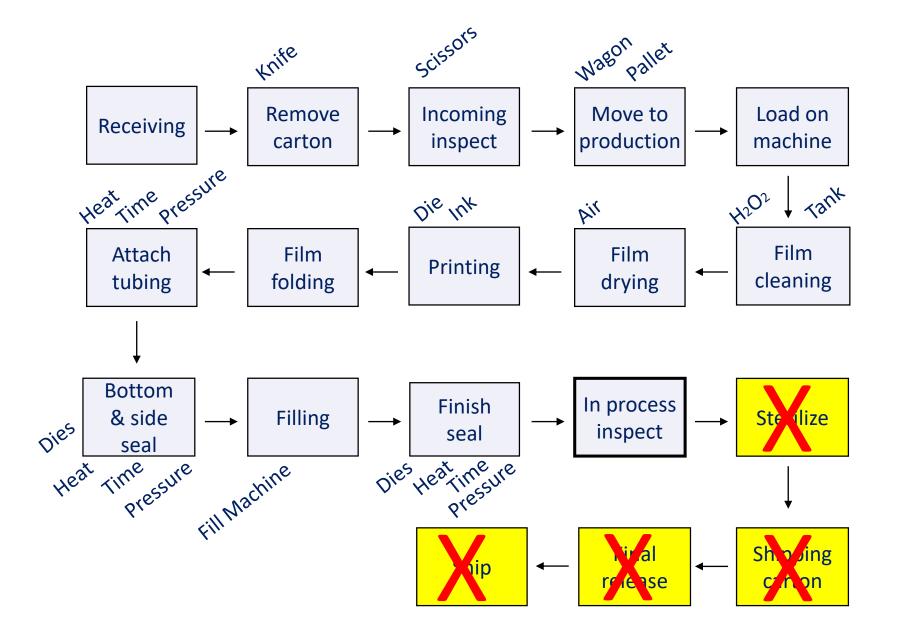


Folding film & attaching tube






Orange Company Continuous Ambulatory Peritoneal Dialysis (CAPD) Solution. Printing continues in very small print size.

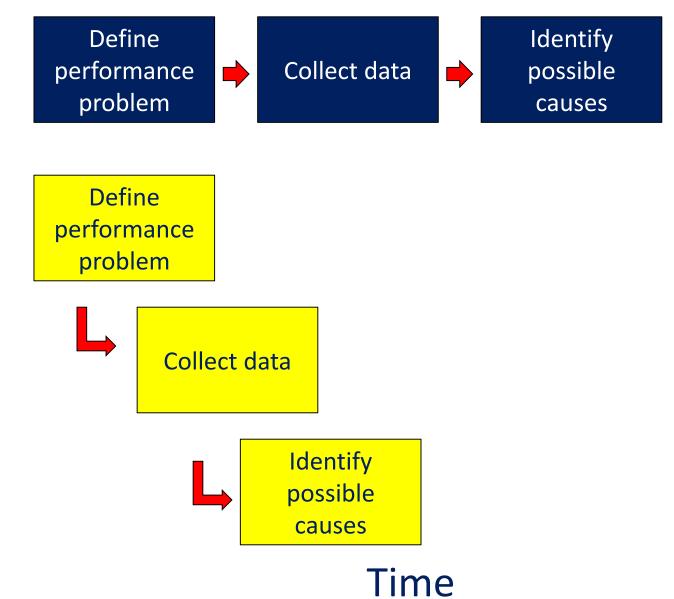

Material flow

New Tech Product Dimensions

New Tech Vs. Old Tech

New Tech Production

- Australian film supplier
- 1st shift bag fabrication & filling
- 2nd shift cleaning & sanitizing
- 3rd shift mixing pharmaceutical for use the next day
- 1 day's production = 1 product (finished goods) lot

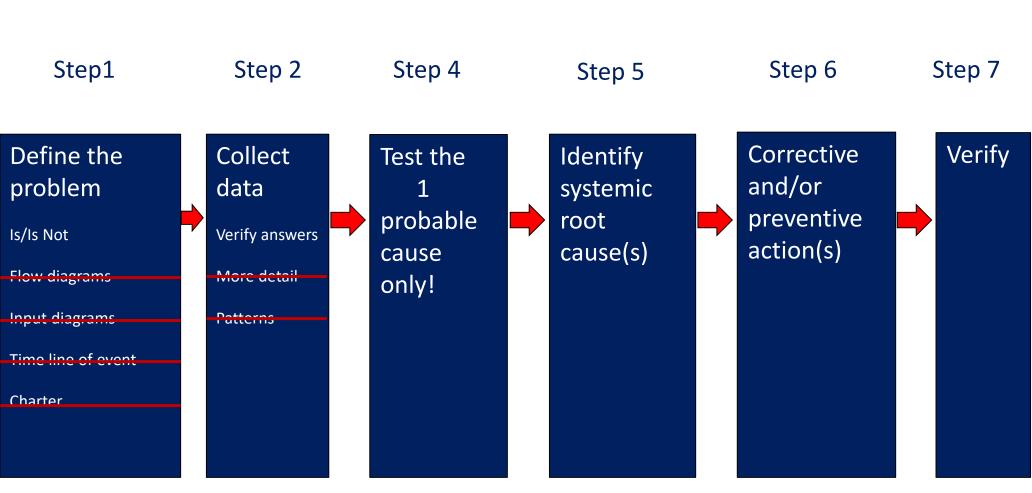

Old Tech Production

- Different film material
- U.S. film supplier
- Different fabrication method
 - \circ $\,$ Fabricate bag in one production room $\,$
 - Fill bag in a second production room

Shortcuts

Steps 1, 2, & 3 can overlap

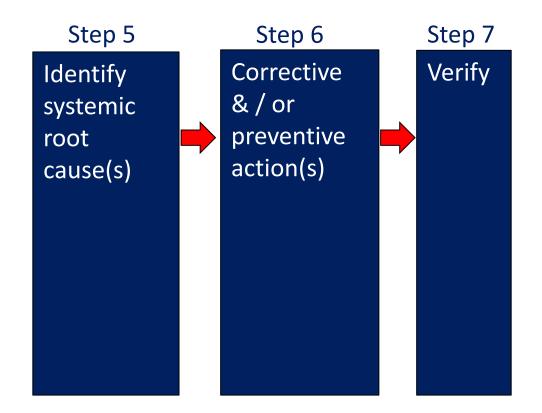
Shortcuts


Develop "pretest" leveraging the <u>strongest</u> patterns

	ls	Verified	Is Not	Verified
What	*Attendants	<	*Pilots, passengers, etc.	<
	"Red sweat"	<	Flu, common cold, allergies, etc.	<
	*Red pigment in sweat/spots	~	*Other color pigment in sweat/spots	✓
	Both genders, young & old	<	1 gender, only young or old	~
Where	*Flights b/w LGA-MIA, both ways	<	*Flights b/w LGA-DFW, LGA-LAX	✓
	* Exposed skin on face, neck, arms, hands	<	*Other exposed body parts or covered skin	✓
	* Symptoms 1 st seen during trolley prep	<	*Earlier	✓
	*All 5 A300s	<	*< 5 A300s, other aircraft	✓
When	January 3 1980	<	Earlier	✓
	*Increasing frequency each wk	~	*Sporadic, decreasing	✓
How Much	69 attendants	<	More or less	✓
	127 incidences	<	More or less	\checkmark
	*"pin prick" size spots	<	*Larger than "pin prick" size spots	
	*Many spots	 	*A few	\checkmark

	ls	Verified	Is Not	Verified
What	*Attendants	~	*Pilots, passengers, etc.	 Image: A start of the start of
Where	*Flights b/w LGA-MIA, both ways	~	*Flights b/w LGA-DFW, LGA-LAX	~
W	*All 5 A300s	√	*< 5 A300s, other aircraft	<

Simple Investigations


Sometimes the root cause is already known

Simple Investigations

Sometimes there hasn't been a change...

Example: An internal audit reveals a regulatory requirement is not being met

Difficult Investigations

Worse case scenarios...

- Can't get data
- One time events
- Out of box failures
- How to handle...
- Follow the methodology
- Carefully document what's opinion & what's fact
- Carefully document actions taken to obtain the facts
- May need to rely more on experiments
- May need to take corrective action on many more possible causes

Investigation Report

Investigation leveraged the 7 step methodology as per our internal procedure...

- Step 1
 - Defined the problem using an Is/Is Not Diagram (Attachment A)
 - Flow charted processes under investigation & identified inputs (Attachments B, C, & D)
 - Constructed timeline of events (Attachment E)
- Step 2
 - Developed data collection plan (Attachment F)
 - Restated problem in fact based Is/Is Not diagram (Attachment G)
- Etc

Return on Investment

- Training
 - Train a critical mass of investigators
 - Educate management
- Implementation
 - Ask investigators to use the methodology
 - Have investigators show you how they used methodology
 - Develop and issue a procedure
- Measure
 - Average investigation time
 - # of investigations over time
 - Audit investigations
- Celebrate
 - Recognize & publicize success

