

Laser Based Headspace Analysis for CCIT

Josine Wilmer, Study Manager at LIGHTHOUSE

Overview – Case Studies

Part 1:

Application to CCI testing - products packaged under a **non-modified** atmosphere

- Filling line CCI qualification
- Cold storage CCI study

Part 2:

Application to CCI testing - products packaged under a **modified** atmosphere

- Method development and validation lyo products
- Method development liquid product
- 100% inspection of lyophilized product

Headspace Analysis Systems

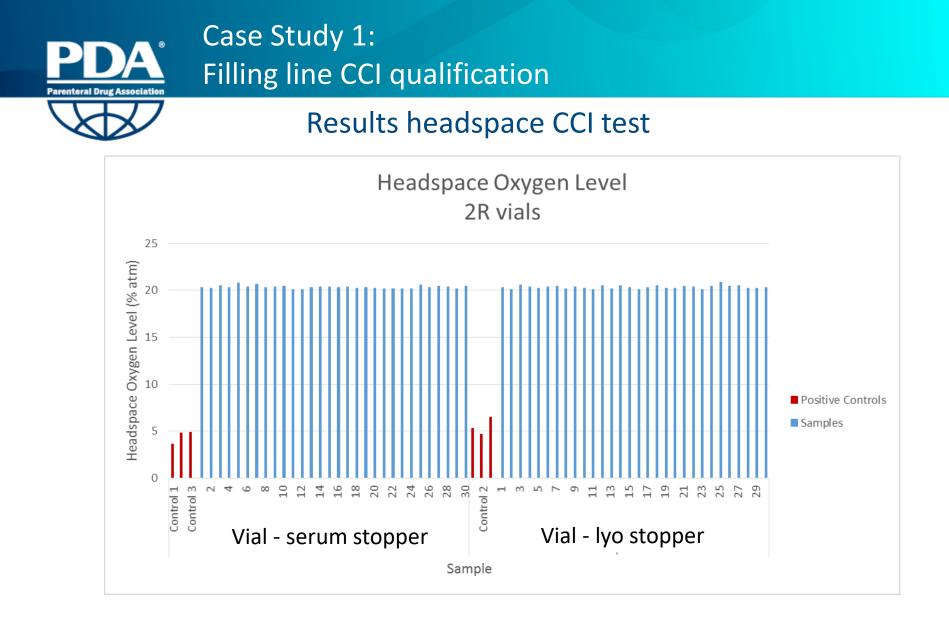
Laboratory and At-line Instruments and accessories

Automated Inspection Machines

Invented for life

Strategic partnership with Bosch for CCI machines with Lighthouse laser measurement technology inside.

Part 2 Case studies – non-modified headspace

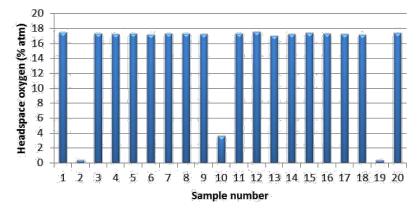

Objective: Generate data demonstrating that the filling process produces good CCI for a specific vial-stopper combination

CCI Study:

- Produce empty stoppered & crimped vials with the process. Initial headspace is 1 atm of air (20.9% oxygen).
- Use headspace gas ingress model to design a sample chamber evacuation, nitrogen backfill, and sample hold cycle.
- Measure samples for changes in headspace composition. Include positive controls having a 10 μm micro-capillary through the stopper.

	Headspace Oxygen Level after defined evacuation, backfill, and storage cycle [% atm]		
Sample Vial	1 μm ideal defect	0.6 μm ideal defect	0.5 μm ideal defect
2R	1	4.1	7.1
6R	3.4	12.1	15.0
20R	11.1	18.8	19.5

Headspace gas flow model can be used to calculate oxygen levels as a function of vial size, sample preparation cycle, and defect size.



Example: Gas ingress measurements straightforwardly produced robust CCI data

Case Study 2: CCI testing for vials stored on dry ice (CO₂)

Headspace oxygen

1200 1000 800 600 400 200 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Sample number

Case

- Air headspace vials stored on dry ice (CO₂)
- Storage on dry ice increases risk of container closure integrity loss,
- Conventional rubber stoppers lose elasticity at -80°C risking CO₂ ingress

Result

- 3 containers revealed decreased oxygen levels
- Same vials revealed increased CO₂ levels

Headspace CO₂

Part 3 Case studies – modified headspace

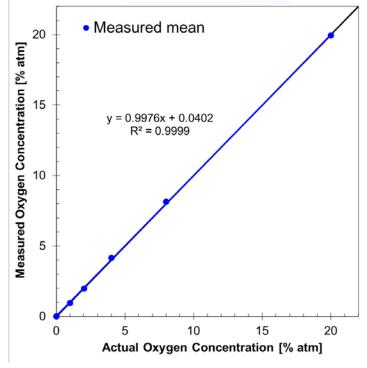
- Headspace analysis CCI method development and validation based on UPS<1207>
- Data & reports reviewed and approved by FDA

Overview of Projects

- 1) Information gathering
 - Product picture, feasibility assessment, type and size vial, headspace composition and pressure, # and sizes positive controls, etc.

2) Method Development project at Lighthouse

- Verify initial headspace conditions, predict headspace changes using validated leak rate model, design protocol, perform tests
- 3) On-site system and Method Validation
 - Lighthouse system IQ/OQ & 21-CFR-11
 - Provide Method Validation Protocol according to USP<1207> and ICH Q2/R1 guidelines

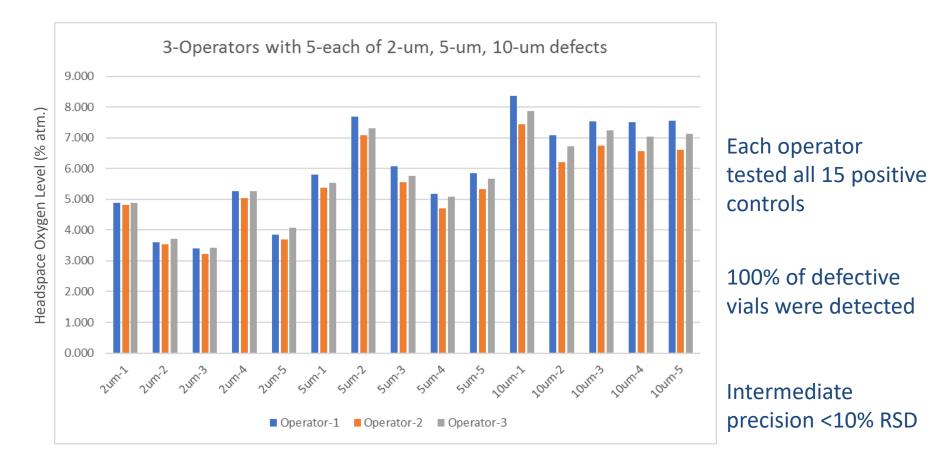


Measurement Performance:

Instrument and machine qualification using NIST traceable standards.

N=100	Headspace Oxygen (% atm)			
Standard Label	Known Value	Meas. Mean	Error	St. Dev.
0.0	0.000	0.01	0.01	0.02
1.0	1.005	0.96	-0.04	0.03
2.0	2.004	1.98	-0.03	0.03
4.0	3.998	4.02	0.02	0.04
8.0	7.999	8.13	0.13	0.03
20.0	20.00	19.93	-0.06	0.04
			Accuracy	↑ Precision

ICH Q2/R1: Validation of analytical procedures

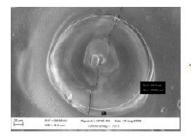

2R vial – 10 replicate measurements

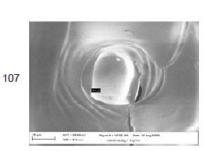
- Accuracy (% Recovery): 90-110%
- Precision (% RSD): <10%
- Linearity
- Limit of detection
- Limit of quantitation
- Range

Example of results

CCI Validation Overview of Results

	Operator-1	Operator-2	Operator-3
2um Defect	5 of 5	5 of 5	5 of 5
5-vials	100%	100%	100%
10um Defect	5 of 5	5 of 5	5 of 5
5-vials	100%	100%	100%
20um Defect	5 of 5	5 of 5	5 of 5
5-vials	100%	100%	100%
Gross Defect	5 of 5	5 of 5	5 of 5
5-vials	100%	100%	100%
No Defect	0 of 5	0 of 5	0 of 5
	100%	100%	100%


Case Study 4: Method development – liquid product



Detection of 5 micron leak within 30 minutes

Sample set

- 6R DIN clear tubing vial 1.5mL product
- Positive controls: 2µm, 5µm,10µm and 15µm laser drilled defects
 - Glass defects
 - Metal plate defects

Nominal hole size 5 µm

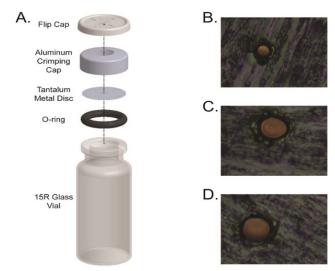


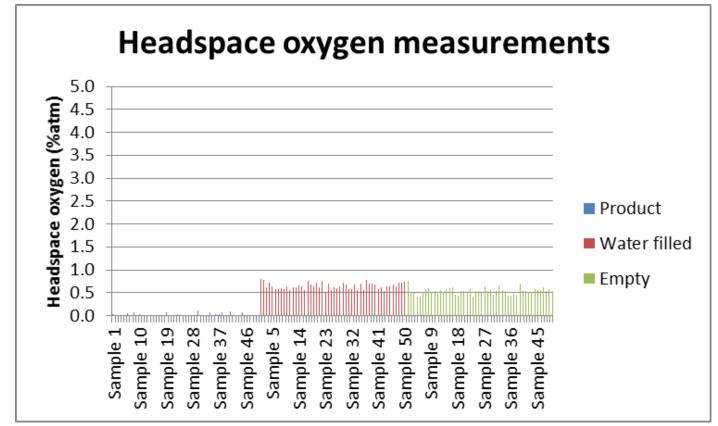
Image provided by Lenox Laser

Study 1: Manufacturing conditions

• Determine purge quality

Study 2: API reactivity

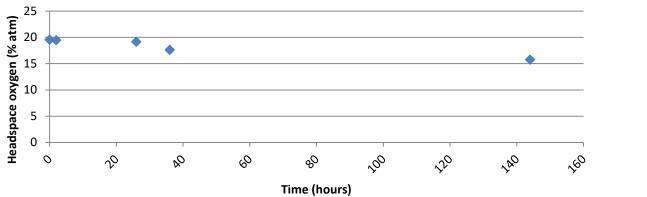
• Oxidation rate


Study 3: CCI method development

- Diffusion tests with vials with known defects
- Effusion test with vials with known defects
- Method protocol

Study 1: Manufacturing conditions

• 50 product, water-filled and empty samples

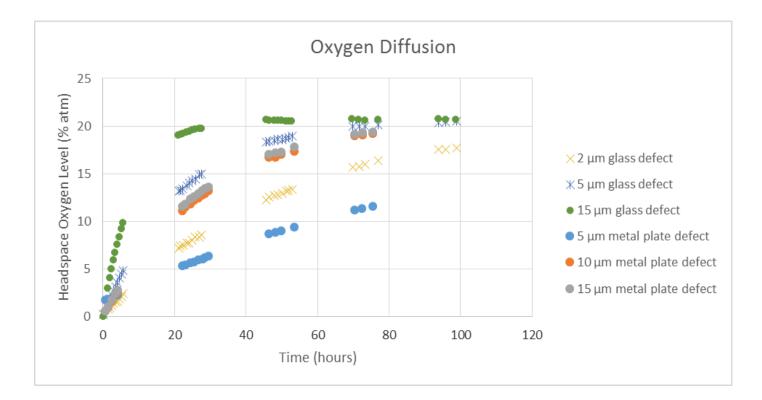


Case Study 4: Method development – liquid product

Study 2: API reactivity

• 50 product samples opened to air and followed over time

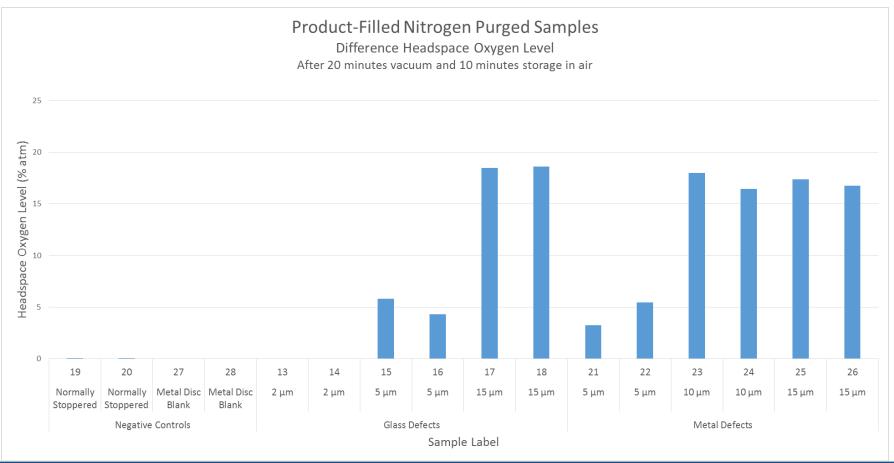
Mean measured headspace oxygen level monitored over time



	Oxygen
	(% atm)
Start	19.59
2 hours	19.50
26 hours	19.18
36 hours	17.63
144 hours	15.76

Study 3: CCI method development

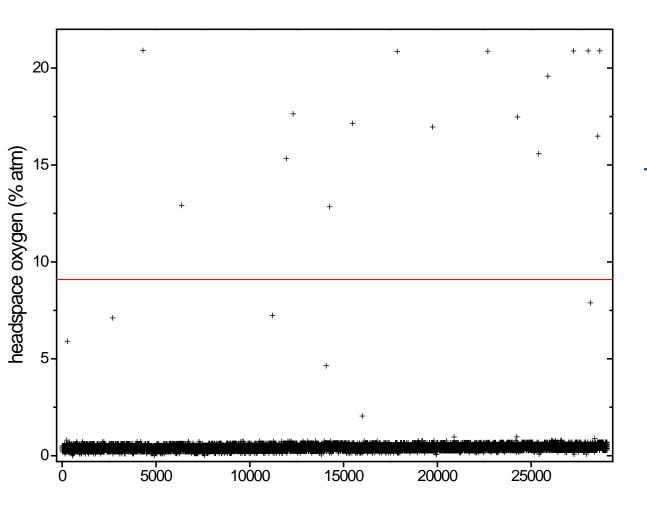
Diffusion tests with vials with known defects



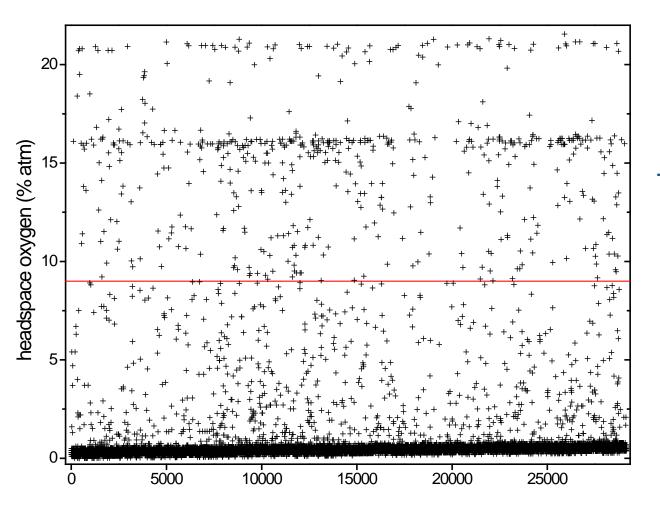
Case Study 4: Method development – liquid product

Study 3: CCI method development

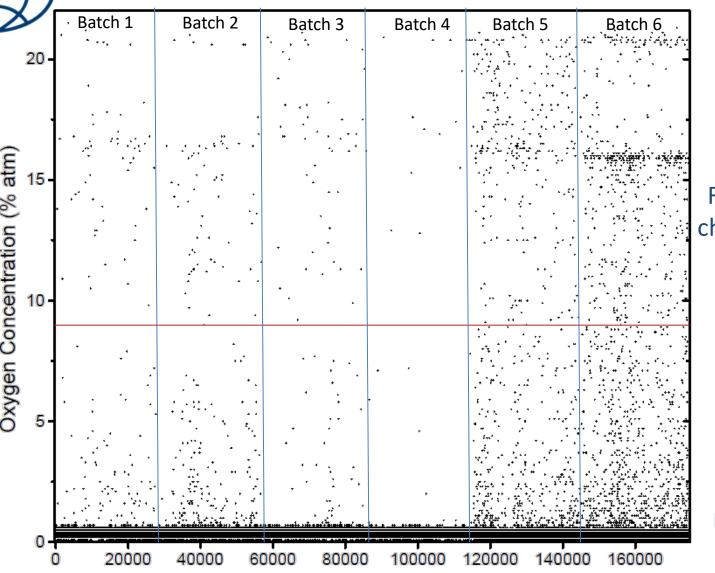
Effusion tests with vials with known defects



- QC vials showed loss of vacuum (spec 200 mbar N₂)
- Client decided to perform 100% CCI inspection of suspect batches

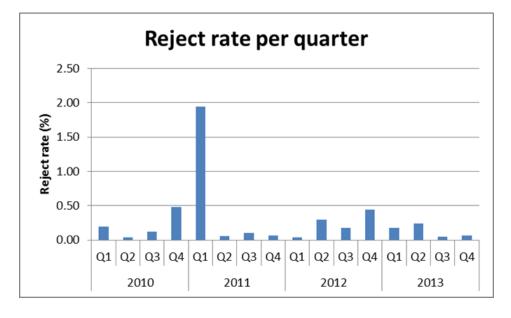

Headspace inspection machine configured for 100% oxygen inspection to identify lyo product vials with high oxygen content and reject them as leaking vials

Total batch size: 29048 Number rejected: 16 Reject rate: 0.06%



Total batch size: 29156 Number rejected: 568 Reject rate: 1.95%

Connecting People, Science and Regulation®



Results of 6 chronological batches

> Not a robust process

Connecting People, Science and Regulation®

Case 100% inspection

4 years of manufacturing data:

- 156 lots
- Total 1.6 million vials

Results

44-lots (28%) with zero rejects3-lots had > 2% reject rateAverage reject rate was 0.27%

It is difficult to manufacture a perfect batch

Thank you for your attention!

For more information about Headspace Applications and how LIGHTHOUSE can support you with equipment and measurement services, please speak to the expert(s) around the room:

- Container closure integrity method development
- Container closure integrity testing
- Headspace oxygen stability studies
- Nitrogen purge optimization and validation
- Lyo cycle optimization
- Lyo chamber moisture mapping
- Packaging permeation studies

