

CCIT Feasibility Study for Vials and Syringes Vacuum vs. HVLD^{mc} on PFS

Tony Stauffer Pti/CCIT s.a. St-Prex, Switzerland

Natural Vial Defect – Cracks mostly not visible – no liquid to vaporize

- Probabilistic in size, but can be measured and certified
- Similar to naturally occurring defects
- Cracks primarily detected by HVLD^{mc}
 Liquid will not pass through cracks

Vacuum Micro Leak Testing / PTI VeriPac®

- Detects gas or vapor release
- Test sensitivity down to 0.01 cc/min. (1 1.5 micron)
- Case studies prove more reliable than dye ingress
- ASTM F2338-09

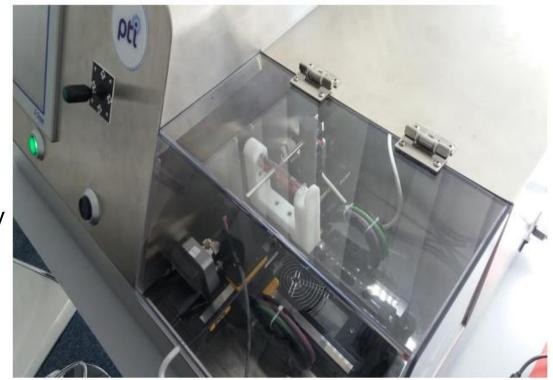
Modified USP/Ph.Eur. Dye Ingress Test vs. Vacuum Decay Leak Test – BMS Test Site

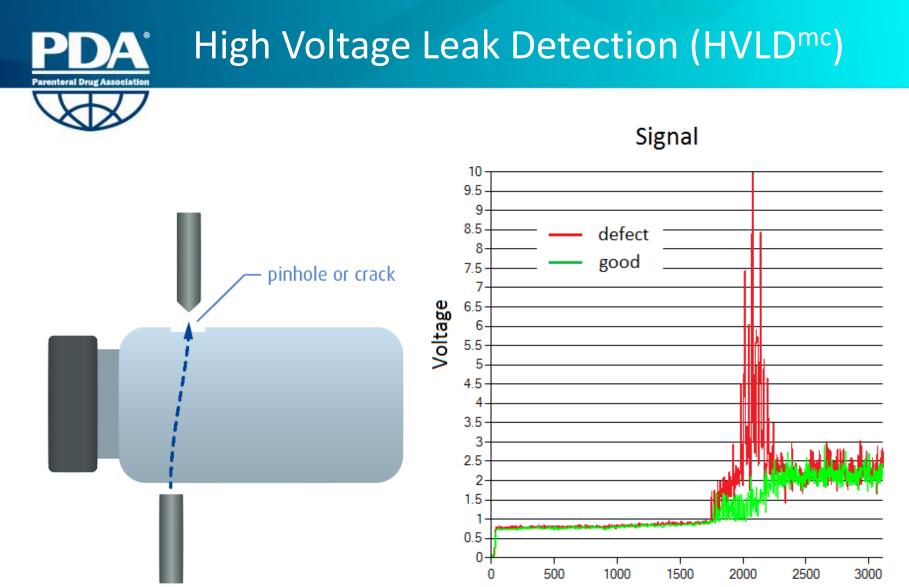
Defect True	ID Codel	Leak Test Results		Visual Inspection Results ²			
Defect Type	ID Code ¹	dP Pa	P/F	Inspector 4	Inspector 5	Inspector 6	
	B6	8	Р	N	Ν	Ν	
Controlo Tostad	B7	8	Р	N	Ν	Ν	
Controls Tested	B 8	8	Р	N	Ν	Ν	
for Ingress	B9	8	Р	N	Ν	Y	
	B10	8	Р	Ν	Ν	Ν	
	111	64	F	Y	Y	Y	
	112	54	F	Ν	Ν	Y	
5µm hole	113	88	F	Y	Y	Y	
	114	56	F	Ν	Ν	Ν	
	115	46	F	Ν	Ν	Y	
	126	192	F	Y	Y	Y	
	127	184	F	Y	Y	Y	
10µm hole	128	186	F	Y	Y	Y	
	129	301	F	Y	Y	Y	
	130	194	F	Y	Y	Y	
15µm hole	141	352	F	Y	Y	Y	
	142	356	F	Y	Y	Y	
	143	346	F	Y	Y	Y	
	144	445	F	Y	Y	Y	
	145	371	F	Y	Y	Y	

Holed syringes are identical to those used for Part 1, ASTM precision and bias studies.

 2 Y = dye seen, N = No dye seen

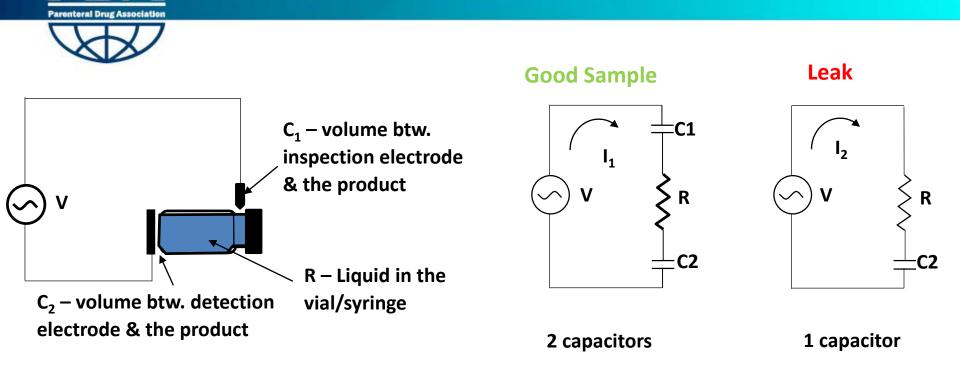
E-Scan - (HVLD^{mc}) High Voltage Leak Detection





CCIT Leak Testing with HVLD^{mc} E-Scan[®]

- Off-line laboratory system to inspect liquid filled
 - Vials
 - Syringes
 - Ampoules
- DC with offset AC Voltage
 - mc: micro current
- Product not exposed to HV
- Improved SNR
- Negligible Ozone

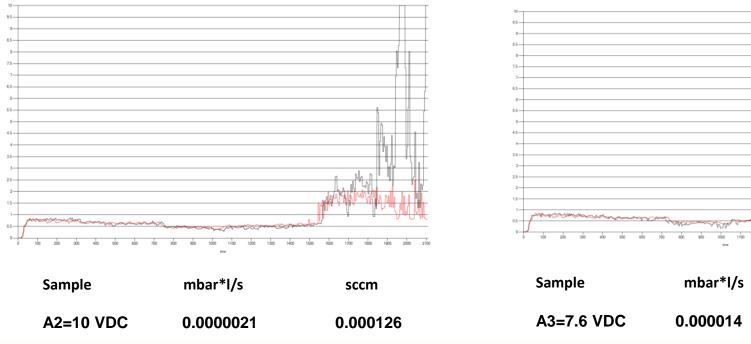


• Good for low conductivity liquids incl. distilled water

Time

Functional Principle of HVLD^{mc} Test

- V High Voltage Source
- R Electric Resistance of the product
- C_1 Capacitor 1: Glass between the inspection electrode and product
- C₂ Capacitor 2: Glass between the detection electrode and product
- I_1 current produced when product container is sealed
- I_2 current produced when product container is defective



MALL – What is detectable by the HVLD^{mc}

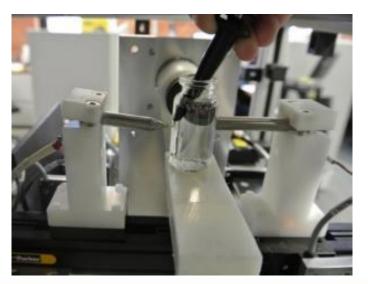
E-Scan 655

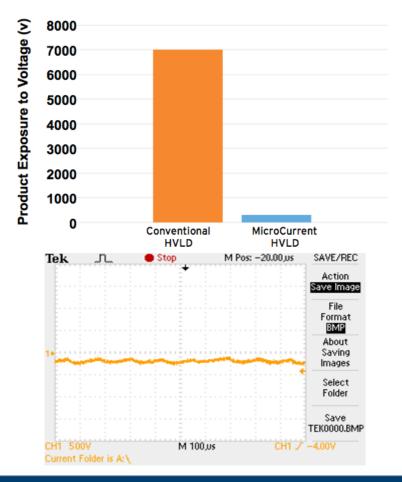
Connecting People, Science and Regulation®

E-Scan 655

sccm

0.00084

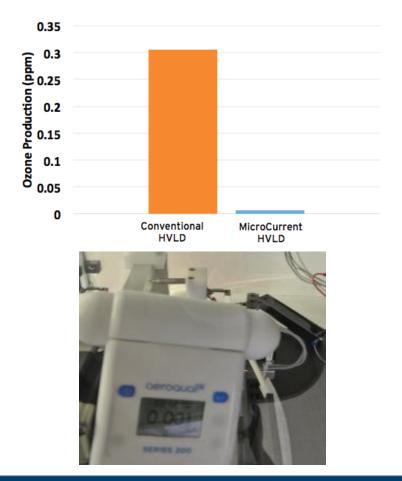

9



MicroCurrent HVLD^{mc} – Low Voltage

The MicroCurrent applied to the product during the test greatly reduces the voltage exposed to the product and environment.

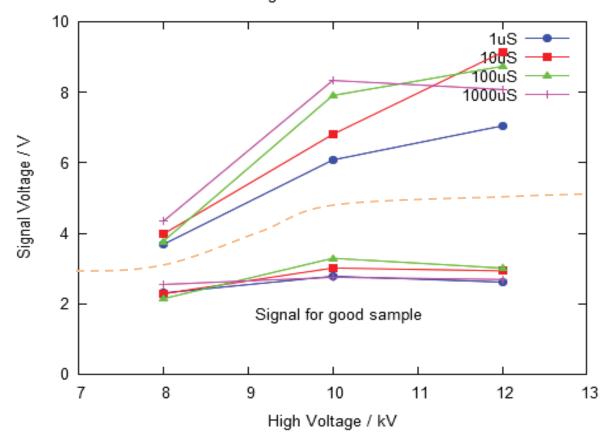
Exposure Voltage					
Conventional HVLD MicroCurrent HVLD					
7,000 V	300 V				
4.3%					



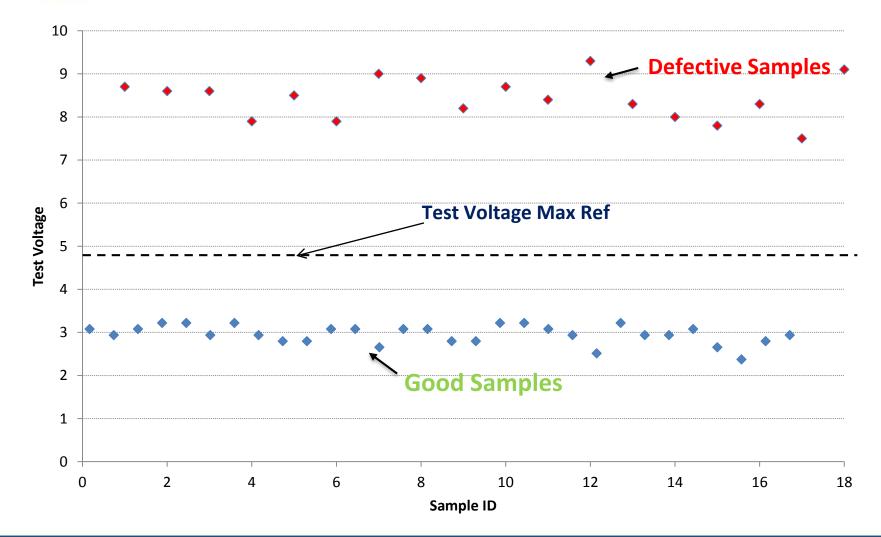
The MicroCurrent applied to the product during the test greatly reduces the voltage exposed to the product and environment.

Ozone Pr	Ozone Production			
0.305 ppm	0.006 ppm			
2.(0%			

Parenteral Drug Associati



The nature of this solution allows the testing of packages with extremely low conductivity liquids such as sterile water (WFI).

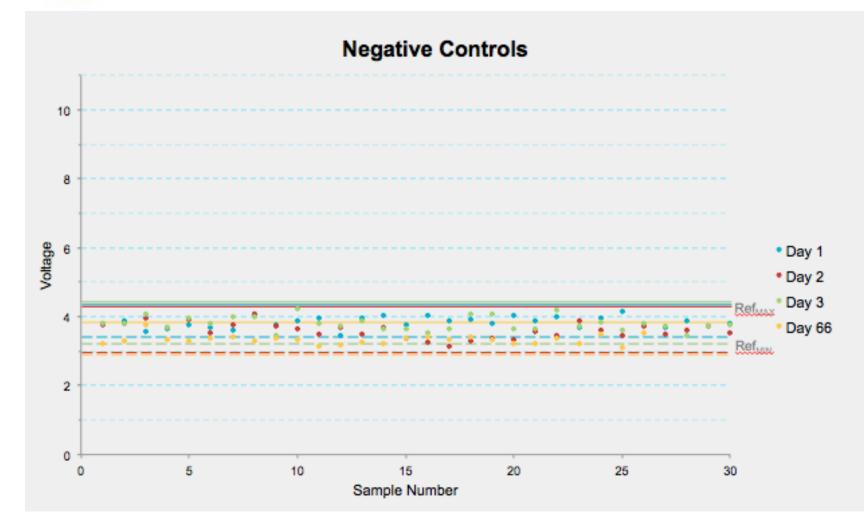


Signal for 2.5u Leaker

Source: PTI / Packaging Technologies and Inspection

Voltage results for Negative and Positive Controls

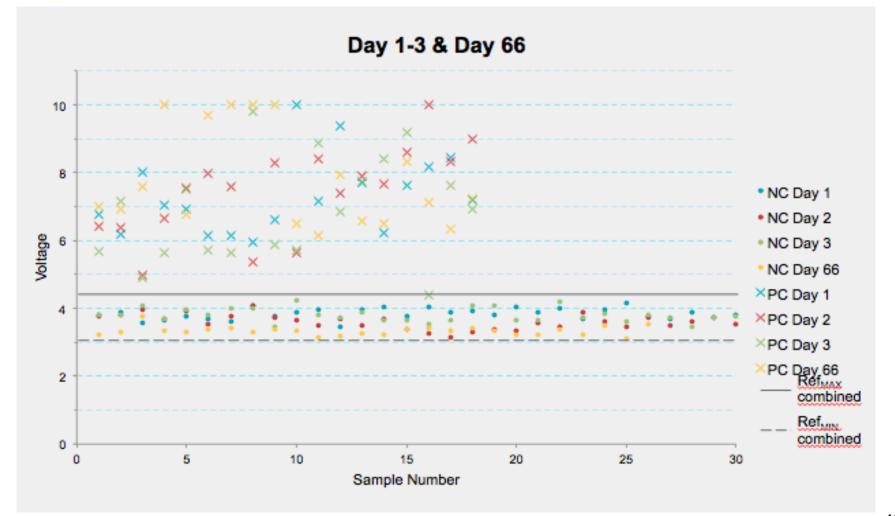
PDA CCIT - New USP 1207 guidance document



Case Study 1

- 2R (4ml capacity) glass vials
- 13mm Teflon faced stopper, Flip Off Seal 13 mm
- Positive Controls: 5, 10 und 15 μm laser drilled holes, neck and bottom
- 3 positive control samples of each hole size and position
- 4 rounds of testing; 3 consecutive days, and one round 66 days later.

Fill volume was 3ml 20% Albumin solution for both PC and NC groups. Vials were filled prior to testing, stoppered and crimped.


PDDA* Negative Controls - Baseline Case Study 1 Parenteral Drug Association Very Study 1

Connecting People, Science and Regulation®

15

Connecting People, Science and Regulation®

Case Study 1

Vacuum vs. HVLD^{mc} for PFS

- 1mL and 2.25 mL Syringe
- Positive Controls: 5, 10 und 20 µm laser drilled holes, barrel and shoulder
- 3 positive controls with water for each size
- 5 positive controls with Albumin for each size
- Albumin concentration of 17.5%
- Two test methods: Vacuum Decay and HVLD^{mc}

PFS - Sample identification

		Number of Samples tested					
	11	1 ml 2.25 ml					
	Water	Water Albumin Wat					
Negative Control unidentified	s 15	24	15	24			

Positive Controls				
5 µm	3	5	3	5
Idendified as	44, 45, 46	19, 20, 21, 22, 23	M2, N2, O2	G2, H2, I2, J2, k2
10 µm	3	5	3	5
Identified as	41, 42, 43	31, 32, 33, 34, 35	M3, N3, O3	G3, H3, I3, J3, K3
20 µm	3	5	3	5
Identified as	38, 39, 40	7, 8, 9, 10, 11	M, N, O	G, H, I, J, K

Summary of results (negative controls)

Case Study 2

Negative controls			VeriPac VP-455 (vacuum decay)		E-Scan 655 (HVLD)		
		# samples	found negative		found negative		
1 ml	Water	15	15	100 %	15	100 %	
TUI	Albumin	24	24	100 %	24	100 %	
2.25 ml	Water	15	15	100 %	15	100 %	
2.25 ml	Albumin	24	24	100 %	24	100 %	

- All negative samples are identified as such with both VeriPac[®] and E-Scan[®] instruments
- No false positives

Summary of results(positive controls)

Case Study 2

Positive Controls			VeriPac VP-455 (vacuum decay)		E-Scan 655 (HVLD)		
			# samples	Found p	oositive	Found positive	
	1 ml	Water	3	0	0 %	3	100%
E um	T UI	Albumin	5	0	0 %	5	100%
5 μm	Water	3	0	0 %	3	100 %	
	2.25 ml		5	0	0 %	4	80 %
	1 ml	Water	3	3	100 %	3	100%
10	T UI	Albumin	5	0	0 %	5	100%
10 µm	2.25 ml	Water	3	0	0 %	3	100 %
	2.25 mi	Albumin	5	0	0 %	5	100 %
	1 1		3	3	100 %	3	100%
1 ml	Albumin	5	0	0 %	5	100%	
20 µm	20 µm	Water	3	3	100 %	3	100 %
	2.25 ml		5	0	0 %	5	100 %

- No albumin prefilled positive sample could be detected with Vacuum Decay
- E-Scan[®] allows to identify all positive samples except one

Test with E-Scan[®] HVLD^{mc}

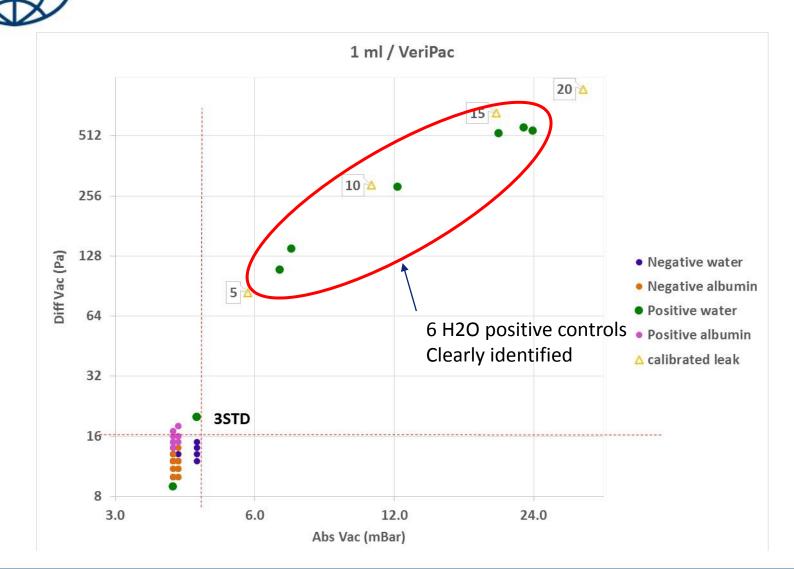
Case Study 2

(negative controls)

		Nega	ative	
	1 ml s	yringe	2.25 ml	syringe
	Water	Alb.	Water	Alb.
Test #	Volt	Volt	Volt	Volt
1	3.73	3.93	3.11	3.26
2	3.11	3.80	3.02	3.66
3	3.59	3.23	3.22	3.51
\downarrow	\rightarrow	\downarrow	\downarrow	\downarrow
13	3.44	3.58	3.47	3.22
14	3.28	3.18	3.12	3.30
15	2.86	4.64	3.33	3.16
16		3.32		3.26
\downarrow		\downarrow		\downarrow
23		3.44		3.20
24		4.04		3.51
Average	3.38	3.59	3.23	3.29
STD	0.28	0.38	0.19	0.19
Noise (3 x STD)	0.85	1.14	0.56	0.56
Ref. 3STD	4.23	4.74	3.79	3.85
Ref. 4 STD	4.52	5.12	3.97	4.04
Ref. 6STD	5.09	5.88	4.34	4.41

Test with E-Scan[®] (HVLD^{mc})

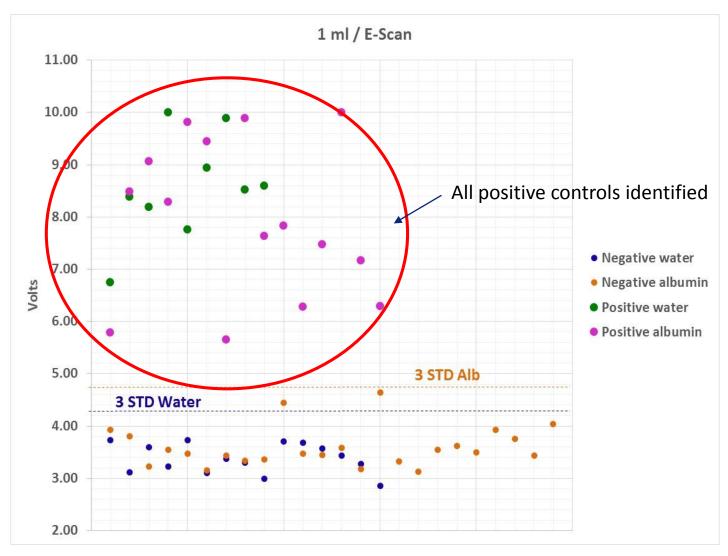
Case Study 2


(positive controls)

		Positive		
		1 ml s	yringe	
		Water	Alb.	
	Nominal			
Sample id.	leak	Volt	Volt	
44	5	6.75		
41	10	8.38		
38	20	8.19		
39	20	10.00		
40	20	7.76		
42	10	8.94		
43	10	9.89		
45	5	8.52		
46	5	8.60		
23	5		5.79	
35	10		8.48	
7	20		9.06	
8	20		8.29	
9	20		9.82	
10	20		9.45	
11	20		5.65	
31	10		9.89	
32	10		7.64	
33	10		7.83	
34	10		6.28	
19	5		7.47	
20	5		10.00	
21	5		7.17	
22	5		6.29	

X	1							
		Negative						
		1 ml s	yringe	ringe 2.25 ml syringe				
	Wa	ter	Al	b.	Wa	ter	A	b.
Test #	Abs (mb)	Diff (Pa)	Abs (mb)	Diff (Pa)	Abs (mb)	Diff (Pa)	Abs (mb)	Diff (mb
1	4.5	15	4.1	10	4.8	15	3.7	13
2	4.5	13	4.0	11	4.0	16	3.8	11
3	4.5	12	4.1	11	3.8	15	3.8	12
\downarrow	\downarrow	\downarrow	↓	\checkmark	↓	\mathbf{V}	↓	\downarrow
13	4.0	12	4.0	12	3.7	12	3.8	9
14	4.0	12	4.0	10	3.8	12	3.8	10
15	4.0	10	4.1	12	3.8	12	3.8	9
16			4.1	12			3.8	10
\downarrow			↓	\downarrow			\downarrow	\downarrow
23			4.1	10			3.8	10
24			4.0	12			3.7	10
erage	4.2	12.2	4.0	11.4	4.0	13.9	3.8	10.7
D	0.2	1.4	0.1	1.2	0.3	1.5	0.0	1.1
oise (3 x STD)	0.6	4.3	0.2	3.5	0.9	4.6	0.1	3.4
f. 3STD	4.8	16.5	4.2	14.9	4.9	18.5	3.9	14.1
f. 6STD	5.5	20.7	4.3	18.4	5.9	23.1	4.1	17.4
	Test # 1 2 3 ↓ 13 14 15 16 ↓ 23 24 erage D ise (3 x STD) f. 3STD	Wa Test # Abs (mb) 1 4.5 2 4.5 3 4.5 ψ ψ 13 4.0 14 4.0 15 4.0 16 ψ 23 24 erage 4.2 D 0.2 ise (3 x STD) 0.6 f. 3STD 4.8	$\begin{array}{ c c c } & & & & & & & & & & & & & & & & & & &$	1 ml syringeWaterAlTest #Abs (mb)Diff (Pa)Abs (mb)14.5154.124.5134.034.5124.1 ψ ψ ψ ψ 134.0124.0144.0124.0154.0104.1 ψ ψ ψ 23 4.1 ψ 24 4.0 4.1 ψ 4.1 ψ 23 4.1 4.0 154.212.2 0 0.21.4 0.1 0.2 $5.3STD$ 4.8 16.5 4.2 4.2	Nega1 ml syringeWaterAlb.Test #Abs (mb)Diff (Pa)Abs (mb)Diff (Pa)14.5154.11024.5134.01134.5124.111 ψ ψ ψ ψ ψ 134.0124.012144.0124.010154.0104.112164.112 ψ ψ ψ ψ ψ ψ ψ 234.11012244.212.24.011.4D0.21.40.11.2ise (3 x STD)0.64.30.23.5f. 3STD4.816.54.214.9	Negative 1 ml syringe Water Alb. Wa Test # Abs (mb) Diff (Pa) Abs (mb) Diff (Pa) Abs (mb) 1 4.5 15 4.1 10 4.8 2 4.5 13 4.0 11 4.0 3 4.5 12 4.1 11 3.8 ψ ψ ψ ψ ψ ψ 13 4.0 12 4.0 12 3.7 14 4.0 12 4.0 10 3.8 15 4.0 10 4.1 12 3.8 16 4.1 12 3.8 4.1 10 24 4.0 12 4.0 12 4.1 16 4.1 10 2.1 4.0 1.1 4.0 23 0.2 1.4 0.1 1.2	Negative I ml syringe 2.25 ml Water Alb Water Test # Abs (mb) Diff (Pa) Abs (mb) Diff (Pa) 1 4.5 15 4.1 10 4.8 15 2 4.5 13 4.0 11 4.0 16 3 4.5 12 4.1 11 3.8 15 ψ	Negative Negative 2.25 ml syringe Vater Al Water Al Test # Abs (mb) Diff (Pa) Abs (mb) Diff (Pa) Abs (mb) Diff (Pa) Abs (mb) 1 4.5 15 4.1 10 4.8 15 3.7 2 4.5 13 4.0 11 4.0 16 3.8 3 4.5 12 4.1 111 3.8 15 3.8 ψ

Vacuum Decay - Baseline


Connecting People, Science and Regulation®

Parenteral Drug Associatio

E-Scan HVLD^{mc} - Baseline

W

Conclusions

- Vacuum decay is a sensitive and reliable test method for gas applications
- Reliability and capability of Vacuum decay is adversely affected by large molecule products such as Albumin, producing a low to zero detection capability for proteinacious solutions
- MicroCurrent^{mc} High Voltage Leak Detection (HVLD^{mc}) is capable of detecting micro cracks to micro holes for all tested liquid protein based solutions – including low conductivity liquids
- HVLD^{mc} (E-Scan 655) technology is the recommended CCIT inspection method as per USP 1207 for liquid prefilled syringes, ampules and vials.

Proven Innovation for Testing Parenteral Packaging

Robust Data Driven Inspection Solutions

PTI Packaging Technologies and Inspection 914.337.2005 | www.ptiusa.com | Tuckahoe,NY

Thank You!

Tony Stauffer <u>t.stauffer@ccit.com</u> CH +41 805 0020 USA +1 914.337.2005 <u>www.ccit.com</u> <u>www.ptiusa.com</u>