Understanding Sterilization

- Sterilization basics
- Radiation Technology & Ethylene Oxide

ANNICK GILLET TECHNICAL DIRECTOR, EO PHARMA

Content

- Basics of sterilization
 - Distinguish disinfection, sterilization and decontamination
 - o **Definition**
 - Selection of sterilization method
 - Difference between Aseptic Assembly and Terminal Sterilization
- Sterilization using Irradiation
 - o Gamma
 - o E-Beam
- Sterilization by Ethylene Oxide
- Comparison between technologies

- Decontamination Vs Sterilization
- Terminal Sterilization Vs Aseptic Assembly
- Method selection

Decontamination Vs Sterilization

A sterile product is one that is free of viable microorganisms

Absolute sterility can never be guaranteed !

- 100% control of the batch is not possible
- No assurance that any microorganism can be detected during Sterility Test

Sterility is much more than just a process!

Initial contamination level

- Microbiological status raw material and components
- Cleaning and disinfection procedures
- Environment control
- Personnel Hygiene

Equipment

- Control
- Maintenance
- Calibration

Product preservation

- Packaging
- Storage

CONNECTING PEOPLE CIENCE AND REGULATION®

Pharmaceutical Product Life Cycle

Think about sterilisation as soon as possible during product development

Sterility Assurance Level (SAL) = The probability

of a single item in a batch being non-sterile after being subjected to a sterilization process.

SAL likelihood of surviving organisms $10^{-1} = 1:10$ $10^{-2} = 1:100$ $10^{-3} = 1:1,000$ $10^{-4} = 1:10,000$ $10^{-5} = 1:100,000$ $10^{-6} = 1:1,000,000$

Sterile means : Safe Product & Functional product

Selection of the right sterilization method is critical !

pda.org 10

There are two (2) methods to produce a sterile drug product:

• Gas (EO, NO₂ ...)

Aseptic Assembly

Maintain sterility of a product that is assembled from components, each of which has been previously sterilized

Sterile

Terminal Sterilization

Exposure to a physical or chemical sterilizing agent for a predetermined extent of treatment

Sterilized

2

How to Assess the effectiveness of a sterilization process ?

Reference: ISO TS 19930:2017

pda.org 13

Probability of Non Sterile Unit (PNSU):

The probability of one or more microorganism being present on a product item in a population of items.

- No SAL can be calculated for aseptically assembled products (no killing kinetic)
- Rely on multiple factors
- Estimated by Media Fill Test (process simulation
- Bracketing approach (MFT before and after process)

PNSU

Selection of the Sterilization Method:

European i narmacopoeia 3.7

Per PDA 2017 Survey – 30% of Aseptically assembled product could be Terminally sterilized !

Based on EMA - *CPMP/QWP/054/98 Decision Tree for the selection of sterilisation methods*

Selection of the Sterilization Method:

Use a **structured approach** to select the most appropriate sterilisation method

Prior to making your choice, consider mitigation options:

- Can your **formula** be adapted (limit degradation and impurities)?
- Can the container be adapted ?
- Can you select compatible component with selected sterilization process ?
- Can the process can be optimized (limit impact)?

CPMP/QWP/054/98 Decision Tree for the selection of sterilisation methods

Radiation Technology

- General principles
- Gamma
- E-Beam
- Sterilization validation

General Terminology

Radioactivity:

Electromagnetic radiation (photons) produced by radioactive decay.

Ionising

Non-Ionising

E-beam = Electrons (with a mass)

General Terminology

Radiation

Energy in the form of waves or moving subatomic particles

Radioactive

Substance emitting radiation

Irradiation

Exposure to radiation ≠ Making something radioactive

General Terminology

Ionising Radiation

Radiation capable of knocking electrons out of their thermal orbits in atoms or molecules

(Absorbed) Dose

Measure of the amount of energy that is absorbed by the material while exposed to a radiation source.

Unit: Gray 1 Gy = 1 Joule per Kg material

Irradiation process monitoring:

Dosimeter

Device having a reproducible, measurable response to radiation, which can be used to measure the obsorbed dose in a given system.

0 kGy 12 kGy 25 kGy 50 kGy 0kGy

Gamma Irradiation

Source: 60Co (mostly)

Decay rate: 12% per year (Half life 5,3 years)

Source Activity: Several Million Ci

Isotropic radiation flux

Sterilization by Irradiation : Gamma

Source Rack

Cobalt-slugs in a source pencil

Source module

E-Beam irradiation

Electron Beam

Directed stream of electrons (B radiation) produced by a particle accelerator

Beam energy

Speed of the electrons. Parameter related to depth of penetration Limited to 10 MeV for medical device sterilisation (ISO 11137-1) to avoid radioactivity induced in product

IBA Rhodotron

Sterilization by Irradiation : E-Beam

Layout E-Beam facility

Sterilization by Irradiation

Electron Beam & Gamma, Penetration

Sterilization by Irradiation : comparison

Parameter	Gamma	Xray	E-Beam
Irradiation parameter	Cycle Time Density	Conveyor speed Density Scan width Beam energy	Conveyor speed Density Scan width Beam energy
Radiation Field	Isotroptic	Highly directional	Highly directional
Geometry of material and heterogeneity of Product	Important to consider	Important to consider	Critical

Sterilization by Irradiation : comparison

Parameter	Gamma	Xray	E-Beam
Product Treatment	Pallet/Tote	Pallet/Tote	Boxes
Dose Rate (Dmin 25KGy)	Hours	Minutes	Seconds
Dose uniformity ration (DUR)	Low sensitivity to product thickness	Low sensitivity to product thickness	sensitivite to product thickness
On/Off Technology	No	Yes	Yes
Flexible Target Dose	No	Yes/No	Yes
Process validation	Straightforward	Straightforward	Potentially complicated

Relevant Standards:

ISO 11137-1:2015	ISO 11137-2: 2015	GMP – Annex 12
Sterilization of health care products – Radiation – Part 1: Requirements for development, validation, and routine control of a sterilization process for medical devices	Sterilization of health care products – Radiation – Part 2: Establishing the sterilization dose	Use of ionising radiation in the manufacture of medicinal products

Method VD_{max} 10³ Number of Survivors 1.0 SDR D₁₀ Values (kGy) 1.5 Steillation Resistance at Star 10² 2.0 2.5 2.8 3.1 10¹ 3.4 3.7 1 4.0 Microbial Probability of Occurrence of a Survivor 10-1 4.2 Challenge 10-2 10⁻³ **Product Bioburden** 10-4 10⁻⁵ 10⁻⁶ 5 15 0 10 20 25 VD(-1) VD(-2)

Dose (kGy)

Standard Distribution of resistances (SDR)

pda.org 37

Sterilization by Irradiation: validation principles

pda.org 38

Sterilization by Irradiation: validation principles

Bioburden is critical parameter in Irradiation technology

Sample Item Portion (SIP) is frequently used for bioburden evaluation . Basis for SIP can be:

Select Sterilization Dose

Bioburden Range	Dose (kGy)
\leq 0.1 to 1.5	15.0
\leq 0.1 to 9.0	17.5
\leq 0.1 to 45	20.0
≤ 0.1 to 220	22.5
≤ 0.1 to 1000	25.0
≤ 1.0 to 5000	27.5
\leq 1.0 to 23,000	30.0
\leq 1.0 to 100,000	32.5
≤ 1.0 to 440,000	35.0

Example minimum Dose to apply related to bioburden

Sterilization by Irradiation : validation principles

• Select Verification Dose: VD_{max}^{25}

Bioburden	Verification Dose (kGy
40	8.6
45	8.7
50	8.8
55	8.9

Verification is conducted at an SAL of 10–1 with 10 product items irradiated.

Dose Mapping

Establish the distribution of absorbed dose within the irradiation container when packed with product in a defined configuration

- Min and Max limits of absorbed Dose
- Define cycle time
- Establish monitoring points
 - Min Dose = 28KGy
 - Max Dose = 37KGy

Quarterly Dose Audit (QDA)

Summary

Minium & Maximum dose to product shall be defined

Methods 1, 2, VDmax, "equivalent method"

Based on natural product bioburden

Routine process monitored with dosimeters

Quarterly Dose Audit (QDA) required

Sterilization by Irradiation: examples

... But also

Ethylene Oxide Sterilization

Introduction

COPYRIGHT © PDA 2018

pda.org 47

Dr. Lloyd Augustus Hall, a food scientist, while working for Griffith Laboratories, devised a process known as the Ethylene Oxide Vacugas treatment to control the growth of molds and bacteria. Griffith and Hall received US Patent 2,189,949 in 1940.

Properties

- Toxic gas
- "Sweet smell" from ca. 500 ppm concentration
- Forms with air explosive mixtures (2.6 %)
- Oncogenic by inhalation
- Irritating for skin and respiratory system
- Mutagenic for animals and very likely for humans

Last choice but sometimes the only one !

Mode of Action

- Extremely reactive
- Irreversible reaction with DNA and proteins (alkylation)
 - The molecule is loses function
 - Replication stops
 - The cell dies

Mainly used to sterilize:

- Heat-sensitive material
- Material sensitive to ionizing radiation
- High Volumes
- Packs with multiple components

Device/packaging must be permeable to the gas

- No aqueous substances
- No protein-type materials
- Powders, batteries, electronic circuits have to be assessed (risk of explosion)
- Vacuum/heat can have adverse impact on some packaging (bubble wrap packaging, polystyrene)

Temperature (T)

increase by 10°C (18°F) = 2x Deactivation Rate

Temperature increase

may increase of permeability of gases through materials

Relative Humidity (RH)

At constant T and RH – if EO concentration increases microbiological Deactivation is more effective - up to c. 800 mg/l

- ~ 500 mg/L @ 131°F
- ~ 800 mg/L @ 86°F

Time

Sterilization by Ethylene Oxide

Microbiological deactivation is more effective with longer gas dwell phase

Industry cycles 2 to 10 hours gas

dwell phase Typically 3-4 hours

Customer Needs To Define

3 key phases

pda.org 60

GENERIC CYCLE

Monitoring EO Sterilization - Biological Indicators

- Usually, the BI contains at least a million spores (>10Exp6) of an organism that is highly-resistant to the EO process (*Bacillus atrophaeus*)
- Growth is very characteristic (orange ring)

Process Challenge Device (PCD)

Item designed to constitute a defined resistance to the sterilization process and used to assess performance of the process

- Internal PCD (IPCD)
- External PCD (EPCD)

D Value

The Time needed to deactivate 90% of population of microorganisms (or 1 Log Reduction)

Level of Sterility Assurance

Example:

 D_{value} IPCD = 15min = 1LR

6 LR = 90 min (Half cycle) 12 LR =180 min (Full cycle)

Sterilization by ETO: validation principles

Compounds that remain on product after EO sterilization

Sterilization by Ethylene Oxide: Validation principle

- Ethylene Oxide (EO)
- Ethylene Chlorohydrin (ECH) = EO + HCL
- Ethylene Glycol (EG) = EO + H2O

ISO 10993-7:2008

"Biological Evaluation Of Medical Devices-Part 7: Ethylene Oxide Sterilization Residuals"

Sterilization by Ethylene Oxide: Validation principle

There are Three Patient Exposure Categories

Limited Exposure (<24h)

<4mg/d EO <9mg/d ECH

Prolonged Exposure

<60mg/d EO first 30d <60mg/d ECH first 30d

Permanent Contact

<2,5 g/d EO lifetime <10 g/d ECH lifetime

ISO 11135:2014

Sterilization of medical devices – Requirements for the development; validation and routine Control of a Sterilization Process for Medical Devices – Ethylene Oxide

ETO Residuals

ISO 10993-7:2008 (R) 2012

Biological evaluation of medical devices - Part 7: Ethylene oxide sterilization residuals

GMP – Annex 1 (Draft)

• Manufacture of Sterile medicinal Products

Bioburden

ISO 11737-1:2018

Sterilization of medical devices (Microbiological methods) Part 1: Determination of a population of microorganisms on products

Product Sterility	Biological Indicator Tests
 ISO 11737-2:2009 (R) 2014 Sterilization of medical devices (Microbiological methods) Part 2: Tests of sterility performed in the definition, validation and maintenance of a sterilization process United States Pharmacopeia (USP) Chapter <71> Sterility Tests European Pharmacopeia (EP) Chapter 2.6.1 Sterility Japanese Pharmacopeia (JP) Chapter 54. Sterility Test 	 ISO 11138-1:2017 Sterilization of health care products (Biological indicators) Part 1: General requirements ISO 11138-2:2017 Sterilization of health care products (Biological indicators)Part 2: Biological indicators for ethylene oxide sterilization processes ISO 14161: 2009 (R) 2014 Biological indicators. Guidance for the selection, use and interpretation of results

Sterilization by Ethylene Oxide : Product examples

Medical Devices

Drug products

Sterilization : Comparison Radiation & Ethylene Oxide

Parameter	Gamma	E-Beam	EO
Process	Individual product, box, tote, pallet	Boxes	Pallets
Material compatibility	Not compatible with some type of polymers (PTFE and PVC affected)	Wider polymer compatibility compared to Gamma	Very good No liquid/proteins Low Temperature (40-55°C)
Validation	Straightforward	Straightforward	Complicate
Validation principle	Based on bioburden	Based on bioburden	Based on Bio Indicators
Requalification	Every 3 months (QDA)	Every 3 months (QDA)	Every 2 years (1 cycle)
SAL	<10exp6	<10exp6	<10exp6
Residues	None	None	ETO,ECH,(EG)

SCIENCE

Sterilization : Comparison Radiation & Ethylene Oxide

Parameter	Gamma	E-Beam	EO
Process	Individual product, box, tote, pallet	Boxes	Pallets
Material compatibility	Not compatible with some type of polymers (PTFE and PVC affected)	Wider polymer compatibility compared to Gamma	Very good No liquid/proteins Low Temperature (40-55°C)
Tolerance for density variation	High	Low	Medium
Routine monitoring	 Only a few parameters (Time, Size, density) Dosimeter 	Higher Nb of parametersDosimeter	 Multiple cycle parameters BI (unless parametric release)
Volumes	High	Limited	High
Turn time	Fast (<24 hours)	Very Fast (<8 hours)	Long (1 week)
PEOPLE			paa.org

Sterilization – Conclusions

You should now feel better at ease with the following concepts :

- What is sterilization Vs decontamination
 - Aseptic Assembly Vs Terminal
 - sterilization
 - Irradiation sterilization (Gamma and E-
 - beam)
 - Ethylene Oxide sterilization

agillet@eu.sterigenics.com

pda.org 78

Reference Slide

- *ISO 11135:2014* Sterilization of medical devices Requirements for the development; validation and routine Control of a Sterilization Process for Medical Devices Ethylene Oxide
- *ISO 10993-7:2008 (R) 2012* Biological evaluation of medical devices Part 7: Ethylene oxide sterilization residuals
- *ISO 11137-1* Sterilization of health care products Radiation Part 1: Requirements for development, validation, and routine control of a sterilization process for medical devices
- ISO 11137-2 Sterilization of health care products Radiation Part 2: Establishing the sterilization dose
- *ISO 11737-1:2018* Sterilization of medical devices (Microbiological methods) Part 1: Determination of a population of microorganisms on products
- ISO 11737-2:2009 (R) 2014
- Sterilization of medical devices (Microbiological methods) Part 2: Tests of sterility performed in the definition, validation and maintenance of a sterilization process
- ISO 11138-1:2017
- Sterilization of health care products (Biological indicators) Part 1: General requirements
- ISO 11138-2:2017
- Sterilization of health care products (Biological indicators)Part 2: Biological indicators for ethylene oxide sterilization processes
- ISO 14161: 2009 (R) 2014
- · Biological indicators. Guidance for the selection, use and interpretation of results

Reference Slide

• ISO 11737-2:2009 (R) 2014

Sterilization of medical devices (Microbiological methods) Part 2: Tests of sterility performed in the definition, validation and maintenance of a sterilization process

- ISO TS 19930:2017 Guidance on aspects of a risk-based approach to assuring sterility of a terminally-sterilized, single use health care product unable to withstand processing to achieve maximally a sterility assurance level of 10-6
- AAMI TIR 33 Sterilization of health care products—Radiation—Substantiation of a selected sterilization dose Method Vdmax
- United States Pharmacopeia (USP) Chapter <71> Sterility Tests
- Eudralex Volume 4 GMP Annex 1
- Eudralex Volume 4 GMP Annex 12
- European Pharmacopeia (EP) Chapter 2.6.1 Sterility
- The Aseptic and Sterile Processing: Control, Compliance and Future Trends Edited by Tim Sandle, Edward Tidswell PDA 2017
- PDA Survey: 2017 PDA Aseptic Processing
- A comparison of Gamma, E-beam, X-Ray and ETO technologies for the indsutrial Sterilization of MD and Health care products GIPA, IIA 31 Aug 2017

