#### Container Closure Integrity: Regulations, Test Methods, Application

#### **Test Methods: Overview**

Instructors Lei LI, Ph. D.; Eli Lilly and Company; <u>lileix@lilly.com</u> Allison Dill, Ph. D.; Eli Lilly and Company; <u>dillal@lilly.com</u>

With significant contribution from Dr. Dana M. Guazzo PhD, RxPax, LLC, dguazzo@rxpax.com





Venice Italy, March 21-22, 2019



#### Leak Test Methods Discussed in USP <1207>

Described in relevant peer-reviewed publications

ASTM test with supportive precision and bias data

Significant variation w/in technologies is seen among vendors

Other methods not included may be acceptable

No method is appropriate for all product-packages

All methods are valuable when used appropriately





#### Leakage event: Stochastic in nature

- Relies on a series of sequential and/or simultaneous events each associated with uncertainties
- Results are associated with random outcomes (probability distributions)
- Some uncertainty in findings

#### **Examples:**

- Microbial challenge tests
- Bubble emission tests
- Tracer liquid tests (either qualitative or quantitative measurement)
- Tracer gas tests by sniffer probe



### **Probabilistic Leak Test Methods**

# When detecting leaks near the detection limit, or rarely occurring leaks

Large sample sizes required Rigorous test condition controls needed

# More difficult to design, develop, validate, implement

**Test sample preparation required** 



#### **Deterministic Leak Test Methods**

#### Leakage event: Follows a predictable sequence

- Gas movement through an open leak path (at specific delta pressure or partial pressure)
- Liquid presence near or in a leak path

#### **Examples:**

- Tracer gas (vacuum mode)
- Laser-based gas headspace analysis
- Pressure / Vacuum decay
- Mass extraction
- Electrical Conductivity and Capacitance Test (High Voltage Leak Detection)



### **Deterministic Leak Test Methods**

#### **Leak Detection**

- Based on physicochemical technologies readily controlled and monitored
- Objective, quantitative data

#### Little or no test sample preparation

Reliable detection of leaks at the detection limit or rarely occurring leaks

Less difficult to design, develop, validate, implement



### **Deterministic or Probabilistic?**

#### **Deterministic**

- For determining inherent CCI via definitive results
- When a compatible method exists for a given product-package

#### **Probabilistic**

- When deterministic methods are incompatible with productpackage
- When a specific method outcome is required, e.g.,
  - o Leak location detection
  - Microbial grow-through check



- Bubble Emission
- Microbial Challenge by Immersion Exposure
- Tracer liquid detection (Dye Immersion
- Tracer Gas Detection (Sniffer Mode)



#### **Requirements:**

Package

- Nonporous, rigid
- Porous material require masking to limit airflow through material
- Flexible or non-fixed components may employ optional restraint mechanism
- Must tolerate submersion or surfactant wetting



#### **Requirements (continued):**

Package

- All types of vials, bottles, syringes, blisters, pouches, bags, etc.
- Small volume generally (< few liters)
- Plastics (with limited helium permeability), glass, metal
- Rigid to flexible to non-fixed components (restraint mechanism may be desirable)

#### **Application:**

- Packages must be able to tolerate submersion or wetting (immersion tests)
- Gas or liquid must be present and be able to migrate through leak path; product, debris, or air locks can block leak path
- Test fixture or restraint mechanism at test sample site of contact may block leak path
- Outgassing of sorbed gas on test sample surface (helium tracer test) or release of entrapped air pockets (bubble emission test) may falsely simulate leakage
- Several minutes to weeks per test sample

### PDA Probabilistic Leak Test Methods

#### **Destructive (most probabilistic methods):**

- Internal pressurization results in test sample barrier breach
- Submersion or surface wetting is destructive to test samples

#### **Detection Limit:**

Varies with

- Leak size, type, length, blockage
- Package material of construction, flexibility
- Challenge conditions, including time, pressure, sample positioning, immersion fluid surface tension and gas saturation
- Inspection conditions and operator technique/skill

**Detection Range:**  $\leq$  0.01 µm (tracer gas); 6-20 µm (all others) may be possible



#### **Reported Usage:**

#### **Bubble Emission**

- Gas must be present at leak site
- Best used for testing empty packages to prevent clogging of leak site

#### **Microbial Immersion**

- Unless the product itself is growth-supportive, test samples are not filled with product
- Substitute product with sterile growth media



#### **Reported Usage:**

#### **Dye Immersion**

- Ingress Test test samples are filled with placebo unless the product itself is compatible with tracer liquid
- Egress Test test samples are filled with tracer liquid
- Subject to visual inspection if applicable

#### **Tracer Gas (Sniffer Mode)**

- Tracer gas must be present at leak site
- Best used for testing empty packages to prevent product contamination of gas analyzer and test probe

### **PDA** Bubble Emission Test



**Detection:** Bubble emission at leak site

#### **Technology:**

- Qualitative measure by visual inspection of bubbles escaping test sample while sample is submerged and subject to differential pressure
- Alternatively, sample surface may be coated with surfactant; leakage evidenced by foaming
- Outcome judged by operators trained using no-leak and withleak controls; indicates leak presence, location and relative size

### **PDA** Bubble Emission Test

#### **Test (Internal Pressurization): ASTM F2096**

- Insert positive pressure source with monitor into test sample
- Submerge test sample in water; apply air to target pressure; hold for pre-determined time
- Observe for continuous stream of bubbles

#### Test (External Vacuum): ASTM D3078

- Submerge test sample in water or other suitable fluid in vacuum chamber
- Evacuate chamber to target pressure; hold for pre-determined time
- Observe for continuous stream of bubbles

#### **Test (Alternative to Submersion):**

• Apply surfactant to test sample surfaces. Observe for foaming



#### **Application:**

- Submersion liquid boiling under vacuum may mask leakage
- Used in all product life-cycle phases, often as a leak forensics test. Not recommended for inherent CCI verification
- Off-line test; On-line testing used for aerosol products
- Several minutes per test sample

**Detection Range:** 20 µm to mm may be possible

#### **Destructive**



#### **Example of bubble leak test**

(Package restraint may be preferred)





Surfactant solution used at suspected leak site

### **PDA** Microbial Challenge by Immersion Test



**Detection**: Microbial growth in test sample resulting from passive ingress or active growth

#### Technology:

- Qualitative measure by visual inspection of microbial growth inside incubated test samples filled with growth-supportive media or product, post immersion in heavily contaminated challenge media over a pre-determined challenge time.
- Pressure and/or temperature cycling may be used to encourage ingress.
- Outcome judged by visual inspection by trained operators; verified by other analytic means. Outcome indicates presence of leak path(s) capable of allowing passive or active microbial entry



#### **Requirements:**

- Product must be supportive of microbial growth; otherwise, test samples must contain sterile growth supportive media
- Test sample headspace must include gas appropriate for microbial growth (e.g., oxygen for aerobic microorganisms)





- Fill test samples with sterile media (growth support capability must be verified). Incubate and inspect to confirm test sample content sterility.
- Immerse test samples in media concentrated with challenge organisms for pre-determined time.

**Recommendation**: Cycle pressure and/or temperature conditions and extend exposure time to encourage entry.



#### **Test (continued):**

- Remove and clean test samples. Incubate under growthpromoting conditions.
- Examine test sample contents for evidence of growth by visual or other means. Compare to test sample blanks and noleak/with-leak controls.

**Detection Range:** 20 µm to mm may be possible

#### Destructive

#### PDA Microbial Challenge by Immersion Test

#### **Application:**

- Liquid must fill leak path to allow microbes to be mechanically swept in (passive entry) or to allow microbial growth into package (active entry)
- Debris or air-locks in leaks will prevent microbial ingress
- Off-line test, although often used as part of aseptic processing validation runs to verify processing conditions
- Generally used in R&D to check inherent CCI (only recommended if deterministic methods are not applicable)
- Weeks per test sample

### PDA Parenteral Drug Association

**Detection:** Tracer liquid migration into (or out of) test sample

#### **Technology (Qualitative Measurement):**

- Visual inspection of tracer liquid inside test samples post immersion in tracer liquid while exposed to differential pressure conditions over a pre-determined time
- Alternatively, test samples may be filled with tracer liquid and submerged in tracer-free fluid
- Outcome judged by trained operators using blank standards and no-leak/with-leak controls

# PDA Tracer Liquid Test (Dye Immersion)

#### **Technology (Quantitative Measurement):**

- Appropriate analytical means (e.g., UV/Vis spectrophotometry for dye tracer) of test sample contents post immersion, as above
- Alternatively, tracer-free submersion fluid is analyzed for tracer
- Outcome judged by appropriate analytical means, versus blank solution standard and no-leak/with-leak controls

**Outcome:** Indicates presence of leak path(s) capable of allowing tracer liquid entry



#### **Requirements:**

- Liquids if used, product must be compatible with tracer liquid; otherwise, test samples are to contain placebo solution
- Powders –product must be compatible with tracer liquid. For smallest leak detection powders will required constitution with tracer-free liquid for analysis or inspection

### PDA Parenteral Drug Association Tracer Liquid Test (Dye Immersion)

#### **Test (Tracer Ingress):**

- Immerse test samples in tracer liquid for pre-determined time and temperature
- Remove and clean test samples. Control and limit time to inspection
- Examine test sample contents for evidence of tracer liquid by visual or analytical means. Compare findings to test sample blanks, no-leak and with-leak controls

### PDA Parenteral Drug Association Tracer Liquid Test (Dye Immersion)

#### **Test (Tracer Egress):**

- Fill test samples with tracer liquid
- Immerse test samples in tracer-free liquid for pre-determined time and temperature
- Examine immersion liquid for evidence of tracer liquid by visual or analytical means Compare findings to test sample blanks, noleak and with-leak controls



#### **Recommended for Both Methods:**

- Minimize volume of tracer-free liquid per test sample. Liquids should be clean and of low surface tension
- Cycle temperatures and/or pressure conditions and extend exposure time to encourage tracer migration
- Control/limit time and conditions of sample storage prior to examination



#### **Application:**

- Off-line test
- Used in R&D or stability to check CCI (only recommended if deterministic methods are not applicable). May be used in package forensics analysis
- Minutes to hours per test sample

### **PDA** Tracer Liquid Test (Dye Immersion)

### A A

#### **Detection Limit:**

Varies with:

- Leak size, type, length, material of construction, blockage
- Tracer concentration, surface tension, cleanliness
- Tracer compatibility with product (ingress test) or immersion fluid (egress test)
- Challenge conditions of time, temperature, pressure, sample positioning
- Inspection conditions and operator training/skill
- Analytical detection sensitivity and test sample preparation

**Detection Range:** 6-10 µm to mm may be possible

#### Destructive

### PDA Parenteral Drug Association Tracer Gas Detection (Sniffer Mode)

**Detection:** Tracer gas leakage rate in mass flow units

#### **Technology:**

- Quantitative measure of tracer gas leak rate from a gas-charged test sample into the atmosphere captured using a sniffer probe connected to a spectroscopic analyzer
- Output analyzed by spectroscopic means
- Leak rate above a baseline pass/fail limit indicative of leak presence and relative size
- Calibrated leak standards used to verify method accuracy and reliability

#### Reference ASTM F2391



#### Test:

- Flood tracer gas into test sample. Use tooling to restrain and/or compress flexible package or package with non-fixed components as required
- At test start, scan test sample surfaces with sniffer probe connected to spectroscopic analyzer specific for tracer gas (for helium: mass spec analysis)
- Gas mass flow rate is continually reported. Reading above a pre-determined baseline is indicative of leak presence (pass/fail test). Reading magnitude may correlate to relative leak size

### PDA Tracer Gas Detection (Sniffer Mode)

#### **Application:**

- Best performed on empty test sample product drawn into analyzer or probe may damage instrument
- Used in all product life-cycle phases, but not recommended for inherent CCI verification
- Useful for leak forensics analysis
- Generally performed off-line
- Requires minutes per test sample

### PDA Provident Tracer Gas Detection (Sniffer Mode)

#### **Nondestructive:**

If tracer gas introduction into test sample poses no threat to product sterility/quality

#### **Detection Limit:**

- Tracer gas permeation through package may be mistaken as leakage
- Tracer gas background in testing environment can influence test results
- Varies with operator technique and sniffer probe design

**Detection Range:**  $\leq$  0.01 µm to mm may be possible





#### Helium sniff test application

#### MD-490S helium/hydrogen leak detector VIC Leak Detection





### Group Exercise: Methodology



#### **Objective:**

 Compile classification and summary table detailing the key attributes of each CCI test methodology

#### Instructions:

- Each team will be assigned one CCI test method to evaluate
- Team will work as a group to classify the test method and identify the following:
  - Test method classification: deterministic v. probabilistic, destructive v. non-destructive, qualitative v. quantitative
  - Best case limit of detection achievable
  - Applicable product life cycle phase(s)
  - Major advantages and limitations
  - Any key considerations
- Each team will present findings in the morning of Day 2



- - Verify MALL (0.3um or smaller)
  - Lot release (based on sampling plan)
  - In-process at-line testing (based on sampling plan)
  - 100% In-line inspection
  - Stability sample testing
  - Media-filled run samples

| Test Method                              | Technology<br>Classification | Limit of<br>Detection | Applications | Major Advantages | Major Limitations | Key<br>Considerations |
|------------------------------------------|------------------------------|-----------------------|--------------|------------------|-------------------|-----------------------|
| Tracer Gas<br>(helium) in<br>Vacuum Mode |                              |                       |              |                  |                   |                       |
| Vacuum/<br>Pressure Decay                |                              |                       |              |                  |                   |                       |
| Mass Extraction                          |                              |                       |              |                  |                   |                       |
| Laser-based<br>Headspace<br>Analysis     |                              |                       |              |                  |                   |                       |
| High Voltage<br>Leak Detection           |                              |                       |              |                  |                   | 40                    |

#### Test Method: Dye Ingress/Microbial Immersion

| Technology<br>Classification                                                | Limit of<br>Detection | Applications         | Major<br>Advantages                                                                                     | Major<br>Limitations                                                                                     | Key<br>Considerations                                                       |
|-----------------------------------------------------------------------------|-----------------------|----------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| <ul> <li>Probabilistic</li> <li>Destructive</li> <li>Qualitative</li> </ul> | 20μm - 50μm           | • Routine QC testing | <ul> <li>Applied for decades</li> <li>Familiarity</li> <li>"Last resort" when all else fails</li> </ul> | <ul> <li>Reduced<br/>sensitivity</li> <li>Destructive</li> <li>Detection is<br/>probabilistic</li> </ul> | <ul> <li>Potential<br/>identification<br/>of defect<br/>location</li> </ul> |
|                                                                             |                       |                      |                                                                                                         |                                                                                                          | 4.4                                                                         |





### **Appendix 1**

#### Comparison of tracer liquid test methods



| Closure Re-seal Method<br>Parameters | USP 31 <381><br>Ph.Eur. 3.2.9 | ISO 8362-5<br>Annex C | ISO test<br>modified to<br>maximize<br>sensitivity |
|--------------------------------------|-------------------------------|-----------------------|----------------------------------------------------|
| Dye                                  | 0.19                          | % aq. Methylene Bl    | ue                                                 |
| Vacuum                               | -27 KPa                       | -25 KPa               | -37 KPa                                            |
| Time at Vacuum                       | 10 min                        | 30 min                | 30 min                                             |
| Time at Ambient                      | 30 min                        | 30 min                | 30 min                                             |
| Detection method                     | Visual inspection             |                       |                                                    |

H. Wolf, T. Stauffer, S-Chen Chen, et al, PDA J Pharm Sci & Technol., <u>63</u>, 2009, p. 489 - 498





#### **Test samples**

#### **BD Glass Syringes**

•1mL volume •Staked Needle •Water-filled

H. Wolf, T. Stauffer, S-Chen Chen, et al, PDA J Pharm Sci & Technol., 63, 2009, p. 489 - 498



#### Inspector Qualification Study

- Test Samples
  - 1mL water-filled syringes WITH and WITHOUT methylene blue
  - Known (-) controls for comparison

#### Logistics

- 3 Test sites, 3 Inspection stations, 10 Inspectors
- 10 sec pacing, randomized, blinded
- Inspection stations varied: lighting type, intensity, position, background angle and position

#### Results

#### • Detection limit varied from 0.2 to 0.5 ppm

H. Wolf, T. Stauffer, S-Chen Chen, et al, PDA J Pharm Sci & Technol., <u>63</u>, 2009, p. 489 - 498



#### **Glass Syringe Defects by Lenox Laser**













Nominal hole size 5 µm

Nominal hole size 10 µm





Nominal hole size 15 µm

H. Wolf, T. Stauffer, S-Chen Chen, et al, PDA J Pharm Sci & Technol., 63, 2009, p. 489 - 498

| Parenteral Drug Association      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
| Parontoral Linup Statute attract | Contract on the Read Provide State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conceptor and the second |  |
|                                  | ALC: NOT ALC |                          |  |

| Test Samples      | USP/Ph.Eur. Dye Test<br>(-27kPa 10 min, amb 30 min)<br>YES (Dye visible) or NO (Not visible) |             |             |  |
|-------------------|----------------------------------------------------------------------------------------------|-------------|-------------|--|
|                   | Inspector 1                                                                                  | Inspector 2 | Inspector 3 |  |
| Negative Controls | No                                                                                           | No          | No          |  |
|                   | No                                                                                           | No          | Νο          |  |
|                   | No                                                                                           | No          | Νο          |  |
|                   | No                                                                                           | No          | Νο          |  |
|                   | No                                                                                           | No          | Νο          |  |
| 5 μm              | No                                                                                           | No          | Yes         |  |
|                   | No                                                                                           | Yes         | Yes         |  |
|                   | No                                                                                           | Yes         | Yes         |  |
|                   | No                                                                                           | No          | No          |  |
|                   | No                                                                                           | No          | Yes         |  |
| 10 μm             | Yes                                                                                          | Yes         | Yes         |  |
|                   | Yes                                                                                          | Yes         | Yes         |  |
|                   | Yes                                                                                          | Yes         | Yes         |  |
|                   | No                                                                                           | No          | Yes         |  |
|                   | No                                                                                           | No          | No          |  |
|                   | No                                                                                           | No          | Yes         |  |
|                   | Yes                                                                                          | Yes         | Yes         |  |
|                   | Yes                                                                                          | Yes         | Yes         |  |
|                   | Yes                                                                                          | Yes         | Yes         |  |
|                   | Yes                                                                                          | Yes         | Yes         |  |



#### **USP/PhEur Dye Ingress Test Samples**



10 µm

15 µm

5 µm

H. Wolf, T. Stauffer, S-Chen Chen, et al, PDA J Pharm Sci & Technol., 63, 2009, p. 489 - 498

| Test Samples |                   | ISO Dye Test<br>(-25kPa 30 min, amb 30 min)<br>YES (Dye visible) or NO (Not visible) |             |             |  |
|--------------|-------------------|--------------------------------------------------------------------------------------|-------------|-------------|--|
|              |                   | Inspector 1                                                                          | Inspector 2 | Inspector 3 |  |
|              | Negative Controls | No                                                                                   | No          | No          |  |
|              |                   | No                                                                                   | Νο          | No          |  |
|              |                   | No                                                                                   | Νο          | No          |  |
|              |                   | No                                                                                   | No          | No          |  |
|              |                   | No                                                                                   | No          | No          |  |
|              | 5 µm              | No                                                                                   | No          | No          |  |
|              |                   | No                                                                                   | Νο          | Yes         |  |
|              |                   | No                                                                                   | Yes         | Yes         |  |
|              |                   | No                                                                                   | Νο          | Yes         |  |
|              |                   | No                                                                                   | Νο          | No          |  |
|              | 10 µm             | Yes                                                                                  | Yes         | Yes         |  |
|              |                   | Yes                                                                                  | Yes         | Yes         |  |
|              |                   | Yes                                                                                  | Yes         | Yes         |  |
|              |                   | No                                                                                   | Νο          | Yes         |  |
|              |                   | No                                                                                   | Νο          | No          |  |
|              | 15 µm             | Yes                                                                                  | Yes         | Yes         |  |
|              |                   | Yes                                                                                  | Yes         | Yes         |  |
|              |                   | Yes                                                                                  | Yes         | Yes         |  |
|              |                   | Yes                                                                                  | Yes         | Yes         |  |
|              |                   | Yes                                                                                  | Yes         | Yes         |  |

Т

| Ξ.             |  |
|----------------|--|
| <              |  |
| 6              |  |
| , <del>¯</del> |  |
| -              |  |
|                |  |
| ¥.             |  |
| л<br>Ш         |  |
| ŧ              |  |
| <u>e</u>       |  |
| ŝ              |  |
| ž              |  |
| 4              |  |
| ē              |  |
| 2              |  |
| 4              |  |
| le             |  |
| Ĵ              |  |
| <u>e</u>       |  |
| <u> </u>       |  |
| Ţ,             |  |
| Τ              |  |
| Ő              |  |
|                |  |
| -              |  |
| 5              |  |
| ā              |  |
| Ξ.             |  |
| ō              |  |
| <u>õ</u>       |  |
| Qo             |  |
| -              |  |
| ō,             |  |
| 5              |  |
| Ď              |  |
| <u>9</u>       |  |
| ,<br>,         |  |
| ű              |  |
| -<br>N1        |  |
| 8              |  |
| 8              |  |
| <u> </u>       |  |
| ē              |  |
| 4              |  |
| 98             |  |
| -              |  |
| 4              |  |
| 86             |  |
|                |  |

| Test Samples      | MODIFIED ISO Dye Test<br>(-37kPa 30 min, amb 30 min)<br>YES (Dye visible) or NO (Not visible) |             |              |  |
|-------------------|-----------------------------------------------------------------------------------------------|-------------|--------------|--|
|                   | Inspector 7                                                                                   | Inspector 8 | Inspector 10 |  |
| Negative Controls | No                                                                                            | Yes         | No           |  |
|                   | No                                                                                            | Yes         | Νο           |  |
|                   | Νο                                                                                            | No          | Yes          |  |
|                   | Νο                                                                                            | Yes         | Yes          |  |
|                   | Yes                                                                                           | No          | No           |  |
| 5 µm              | Yes                                                                                           | Yes         | Yes          |  |
|                   | Yes                                                                                           | Yes         | Yes          |  |
|                   | Yes                                                                                           | Yes         | Yes          |  |
|                   | Yes                                                                                           | Yes         | Yes          |  |
|                   | Yes                                                                                           | Yes         | Yes          |  |
| 10 µm             | Yes                                                                                           | Yes         | Yes          |  |
|                   | Yes                                                                                           | Yes         | Yes          |  |
|                   | Yes                                                                                           | Yes         | Yes          |  |
|                   | Yes                                                                                           | Yes         | Yes          |  |
|                   | Yes                                                                                           | Yes         | Yes          |  |
| 15 μm             | Yes                                                                                           | Yes         | Yes          |  |
|                   | Yes                                                                                           | Yes         | Yes          |  |
|                   | Yes                                                                                           | Yes         | Yes          |  |
|                   | Yes                                                                                           | Yes         | Yes          |  |
|                   | Yes                                                                                           | Yes         | Yes          |  |

#### Modified ISO Dye Ingress Test Samples



Negative Controls

5 µm

10 µm

15 µm

H. Wolf, T. Stauffer, S-Chen Chen, et al, PDA J Pharm Sci & Technol., 63, 2009, p. 489 - 498



# Compendial and ISO dye ingress methods Summary

- Inspector capabilities varied
- Visual inspection conditions not defined
- All methods lacked sensitivity, reliability for smallest leaks
- The 'optimized' ISO method resulted detected more leaking packages, but greater number of 'good' syringes were falsely reported as leaking

H. Wolf, T. Stauffer, S-Chen Chen, et al, PDA J Pharm Sci & Technol., <u>63</u>, 2009, p. 489 - 498



# Compendial and ISO dye ingress methods Summary

#### • Other disadvantages

#### False negative risks

- Proteins, salts, etc. clog leak paths, inhibiting dye ingress
- Dye dilution in larger volumes
- Dye may fade over time
- False positive risks
  - Inspector error
  - Sample contamination (if analytically analyzed)

#### Destructive method

H. Wolf, T. Stauffer, S-Chen Chen, et al, PDA J Pharm Sci & Technol., <u>63</u>, 2009, p. 489 - 498



#### Dye test used for seal gap check

