Optical Emission Spectroscopy, an emerging technology for CCIT

Instructor:

• *Philippe BUNOD, PhD. ; Pfeiffer Vacuum; philippe.bunod@pfeiffer-vacuum.fr Product Manager – CCIT Solutions*

Structure

- 1. Pfeiffer Vacuum at a glance
- 2. The 3 CCIT technologies proposed by Pfeiffer Vacuum
- 3. Optical Emission Spectroscopy :
	- How does it work ?
	- Influence and limiting factors
	- Advantages
	- Detection of gross leaks
- 4. Vacuum test methods / Microbial ingress risk
- 5. Conclusions

2

Pfeiffer Vacuum, leader in vacuum technology

3 technologies for CCIT solutions

Air micro-flow sensor

HELIUM MASS SPECTROMETRY

Magnetic deflection spectrometer

OPTICAL EMISSION SPECTROMETRY

Multi-gas analyser (N₂, CO₂, Ar, H₂O)

Typical features of PV CCIT solutions

- Deterministic & non-destructive
- Applicable for non-porous containers
- Global test under vacuum (integral leak test)
- The test pressure depends on the technology: *Helium < 10-1 mbar / Mass Extraction~1 mbar / OES < 5.10-2 mbar*

OPTICAL

MASS

EXTRACTION

5

Typical features of PV CCIT solutions

- We are **detecting** gas flow escaping from a leaky container *it is impossible to detect a defect when it is clogged !*
- We are **measuring** a gas leakage (atm.cc/s) \rightarrow leakage can be converted in an equivalent defect size, i.e: sharp edge orifice Φ *(um)*
- The **calibrations** are performed using **certified leaks or orifices** → no need to generate positives for calibration.
- The detection of gross leaks is challenging for low headspace dry filled containers due to the risk to empty the container before testing \rightarrow However, there are multiple countermeasures implemented to address this concern.

O.E.S. – Operating principle

O.E.S. – Real time measurement

The air (N_2) inside the test chamber can be easily evacuated using vacuum pumps.

Moisture $(H₂0 \rightarrow H 8$ OH) is much more difficult to evacuate because it is coming from out-gassing of materials in contact with vacuum.

OES – Typical air leakage signal (raw data)

The air leakage corresponds to the intensity ratio [N $_{\rm 2}$ /H]

In case of fine leak, the air leakage signal (N₂/H) increases as out-gassing (OH & H) is decreasing with time.

In case of gross leak (>100µm), depending on the headspace volume we can see the container being evacuated.

O.E.S. – Operating sequence

- 1/. Part loading (manually or automatically)
- 2/. Chamber evacuation (1000 \rightarrow few mbar) (Gross Leak detection)
- 3/. Chamber pumping (few mbar \rightarrow <10⁻⁴ mbar)
- 4/. O.E.S. measurement start when pressure is < 10⁻² mbar
- 5/. Chamber venting (with Ambient air, dry N_2 or Argon)
- 6/. Part unloading

Permeation / Out-gassing / Leakage

Glass wall (1mm)

For all global vacuum test methods, **Permeation** and **Out-gassing** flows correspond to virtual leaks and **limit the sensitivity.**

Permeation of air is generally slow and far below the MALL level. **It does not limit the sensitivity**.

Out-gassing flow is made of Water (80%) and others gas (20%). It decreases slowly when the time under vacuum increase. It **strongly impacts the sensitivity.**

OES – Influence & limiting factors

For all vacuum test solutions: **Detection limit ** when Test Duration /

- Out-gassing limit the sensitivity of the test, it can be minimized by:
	- Design of Container and test chamber (material, surface, roughness)
	- Controlling operating conditions: temperature (°C) and humidity (<30%RH)
	- Increasing the test duration… but that increase the risk to miss gross leaks!
- Gross leak detection can be challenging in case of small gas headspace volume combined with a low out-gassing drug.
	- Specific Massive Leak test can be performed prior to O.E.S measurements

Massive leak detection prior to OES

• **AMI includes a gross leak detection module** *- GO/NOGO test = qualitative measurement.*

• **Based on a volumetric method:**

- Pressure equilibrium between a vacuum tank and the test chamber.

- The test chamber is designed in order to minimize the free volume around the sample and the vacuum tank is sized accordingly.

- **Fast detection preventing equipment contamination**
	- *In case of Gross Leak (air and/or liquid), the high vacuum circuit and OES sensor are not contaminated.*
	- *Only few components need to be cleaned or replaced.*

pda.org

O.E.S. – Measurements are volume independent

Measurement and sensitivity are not impacted by:

- container expansion during the test \rightarrow Tests can be performed on semi-rigid containers

- the free space in the chamber around the container \rightarrow Test of complex design devices (i.e. auto-injectors) \rightarrow Possibility to test per batch to increase the throughput

O.E.S. – Method is not volume dependant

 \rightarrow 0.5µm defect (sharp edge orifice) can de detected in a batch of 10 vials and/or on 1 vial in the same test chamber.

O.E.S. – Selectivity

OES multi-gas sensor:

- different gases (N₂, H₂0, Ar, CO₂...) can be detected simultaneously \rightarrow detection limit depends on the gas which is tracked for leak detection
- no interference with out-gassing,
- \rightarrow Air / N₂ is tracked independently of moisture (out-gassing)
- \rightarrow Air / N₂ is tracked independently of Argon used for chamber venting
- Air/ N_2 leak and water leak can be detected simultaneously

O.E.S. - Fast and sensitive

The Air Leakage raw signal corresponds to the intensity ratio $[N_2/H]$.

Vacuum Test Methods/Microbial Ingress Risk

Correlation established by Kirsh dramatically below **< 0.7µm** & all, has been performed on glass vials using glass µ-pipettes
ertefecte artefacts.

The microbial ingress conditions used for this study corresponds to a **worst case:**

Figure 2 – The correlation of microbial failure rate (%) and the mean logarithm of the absolute leak rate and nominal leak diameter for modified SVPs. The absolute leak rate (standard cubic centimeter per second) was determined by mass-spectrometry based helium leak rate detection. Microbial failure was measured by microbial ingress after 24 hour immersion in a bath (37°C) containing 10⁸

to 10¹⁰ *P. diminuta* and *E. coli* organisms/ml and a 13 day. 35°C incubation

Conclusions

O.E.S. technology offers many advantages:

- **Non-destructive** and **deterministic**
- **Easy to operate** and easy **to set-up** (non sample preparation)
- **Versatile** (no format parts required)
- **Selective** (Air and water leaks can be detected simultaneously)
- **Volume independent** (test of complex product or to test per batch)
- **High sensitivity** combined with **high throughput** (i.e.: 0.4µm orifice detected within 7 seconds on 20ml glass vials)
- In high sensitivity mode **0.2µm orifice can be detected**

Conclusions

• AMI equipments, using O.E.S. spectroscopy have been qualified as IPC test for the production of blister packs (high sensitive inhalation drugs).

• Promising technology to perform high sensitivity 100% in-line leak testing.

 0.4µm defect (sharp edge orifice) can be detected in 10 sec on glass vial tested one by one or by batch of up to 10.

Thank you for your attention !

Links http ://www.pfeiffer-vacuum.com Email : philippe.bunod@pfeiffer-vacuum.fr

COPYRIGHT © PDA 2018

pda.org