

CCIT - Container Closure Integrity Testing following USP 1207

Tony Stauffer/ Tatiana Simental CCIT s.a./Pti

St Prex, Switzerland

2019-02

CCIT - New USP 1207 guidance document

Documents specifies and differentiates acceptable test methods:

- Deterministic Leak Test Methods
 - Vacuum (ASTM F2338-09)
 - Electrical Conductivity and Capacitance tests (HVLD)
 - Head Space analysis
- Seal Quality test methods
 - Airborne Ultrasound (ASTM F3004-13)
- Probabilistic leak test methods (not considered good practice)
 - Water bath
 - Blue Dye Ingress
 - Microbial ingress test
 - Burst test

Positive Controls - Natural Vial Defects

Vacuum Micro Leak Testing/CCIT

- Measures and verifies container closure integrity
- Detects vapor or gas release
- Test sensitivity down to 0.01 cc/min. (1 1.5 micron)
- Case studies prove more reliable than dye ingress
- ASTM F2338-09

VeriPac Differential Vacuum Test Method (simplyfied scPti hematics)

ASTM F2338-09

Typical VeriPac set-up with MicroCalibrator

Determining Leak Size

Test method for Tyvek[®] Lidded Trays (ASTM 2338-09)

PDA Parenteral Drug Association Parenteral Drug Association

Pre-filled Syringes Vials & Ampoules BFS Bottles and Cups Pouches & IV Bags

E-Scan based on HVLD^{mc} for liquid filled parenteral products

Off-line laboratory system to Inspect liquid filled Vials Syringes Ampules

Lower HV application

mc: micro current

Improved SNR

Good for low conductivity liquids Incl distilled water

Product not exposed to HV

Negligable Ozone production

Functional principle of HVLD^{mc} test

V – High Voltage Source

- **R** Electric Resistance of the product
- **C**₁ Capacitor 1: Glass between the inspection electrode and product
- C₂ Capacitor 2: Glass between the detection electrode and product
- I₁ current produced when product container is sealed
- I_2 current produced when product container is defective

E-Scan – HVLD^{mc} - Electrical Conductivity and Capacitance Micro Leak Detection

1 ml Syringe - HVLD^{mc} Test

Signal Detection 20ml Vial – Integrator – Signal has amplitude changes

- High Voltage:16kV
- Red 3.6um leakage
- Black sample without defect
- > 350 RPM, 5mm/s, filled with distilled water

Signal

Test with E-Scan[®] (positive controls)

		Positive		
		1 ml syringe		
	_	Water	Alb.	
	Nominal			
Sample id.	leak	Volt	Volt	
44	5	6.75		
41	10	8.38		
38	20	8.19		
39	?	10.00		
40	?	7.76		
42	?	8.94		
43	?	9.89		
45	?	8.52		
46	?	8.60		
23	5		5.79	
35	10		8.48	
7	20		9.06	
8	?		8.29	
9	?		9.82	
10	?		9.45	
11	?		5.65	
31	?		9.89	
32	?		7.64	
33	?		7.83	
34	?		6.28	
19	?		7.47	
20	?		10.00	
21	?		7.17	
22	?		6.29	

		Positive		
		2.25 ml syringe		
		Water	Alb.	
	Nominal			
Sample id.	leak	Volt	Volt	
M2	5	8.19		
M3	10	9.46		
м	20	10.00		
N2	?	9.22		
02	?	10.00		
N3	?	9.22		
O3	?	7.95		
N	?	10.00		
0	?	10.00		
G2	5		5.38	
G3	10		6.08	
G	20		9.71	
H2	?		7.09	
12	?		4.70	
J2	?		5.45	
К2	?		3.38	
H3	?		7.06	
13	?		4.87	
J3	?		5.83	
КЗ	?		6.35	
H	?		7.77	
1	?		9.03	
J	?		8.74	
к	?		8.60	

Voltage for Good and Defective samples

Negative Control Samples

Connecting People, Science and Regulation®

Parenteral Drug Associatio

High Conductivity Liquid 1'000uS

Connecting People, Science and Regulation®

Parenteral Drug Association

Low conductivity Liquid 1uS

High Voltage - Technology Comparison (distilled Water w/ 1ml Syringe)

Ozone Creation

HVLD - 0.305ppm Ozone after 1 min

HVLD^{mc} – 0.001ppm Ozone after 6 minutes

Feasibility Study – PFS Samples tested

- 1 ml and 2.25 ml syringes
- Prefilled with H2O and Albumin (175 mg/ml, Cp $_{\simeq}$ 2.5)

Summary of results (negative controls)

Negative controls			VeriPac VP-455 (vacuum decay)		E-Scan 655 (HVLD)	
		# samples	found negative		found negative	
1 ml	Water	15	15	100 %	15	100 %
	Albumin	24	24	100 %	24	100 %
2.25 ml	Water	15	15	100 %	15	100 %
	Albumin	24	24	100 %	24	100 %

- All negative samples are identified as such with both VeriPac[®] and E-Scan[®] instruments
- No false positives

Summary of results (positive controls)

Positive Controls			VeriPac VP-455 (vacuum decay)		E-Scan 655 (HVLD)		
		# samples	Found positive		Found positive		
5 µm -	1 ml	Water	3	0	0 %	3	100%
		Albumin	5	0	0 %	5	100%
	2.25 ml	Water	3	0	0 %	3	100 %
		Albumin	5	0	0 %	4	80 %
10 µm	1 ml	Water	3	3	100 %	3	100%
		Albumin	5	0	0 %	5	100%
	2.25 ml	Water	3	0	0 %	3	100 %
		Albumin	5	0	0 %	5	100 %
20 µm	1 ml	Water	3	3	100 %	3	100%
		Albumin	5	0	0 %	5	100%
	2.25 ml	Water	3	3	100 %	3	100 %
		Albumin	5	0	0 %	5	100 %

- No albumin prefilled positive sample could be detected with Vacuum Decay
- E-Scan[®] allows to identify all positive samples except one

Non-Destructive, Non-Invasive, No Sample preparation Follows USP 1207 Guidelines ASTM test method > ISO/FDA recognized **Repeatable as well as Reproducible Deterministic Quantitative (Informative)** Accurate and Reliable Simple and Robust **Cost Effective Zero Waste**

Case study 3 (Extra)

Scratch

Heat

Water Cool

- 16kV
- Sensitivity 50%
- Speed 15mm/sec
- 250RPM
- Exposure voltage ~300V
- Negligible Ozone creation

Controlled crack produced. Certified flow measurement with Helium mass spec. Peak signal response is recorded. Voltage signal response with each rotation.

Sample		leak rate	Visual	Size	
	mbar·l/s	10⁻⁵ mbar·l/sec	sccm		um
1	0.00095	95	0.05700	Large crack	2.67
2	0.0000021	0.21	0.00013	Medium crack	0.13
3	0.000014	1.4	0.00084	Medium crack	0.32
4	0	0	0.00000	Small Scratch	0.00
6	0.00067	67	0.04020	Large crack	2.24
7	0.015	1500	0.90000	Large crack	10.61
9	0.0000002 9	0.029	0.00002	Small crack	0.05
10	0.00029	29.0	0.01740	Large crack	1.47
11	0.074	7400	4.44000	Large crack	23.56
12	0.055	5500	3.30000	Large crack	20.31
16	0.0014	140	0.08400	Small crack	3.24
18	0	0	0.00000	Small Scratch	0.00
19	0	0	0.00000	Small Scratch	0.00
20	0.016	1600	0.96000	Large crack	10.95

Sample 2

Sample 3

Sample 6

Sample 16

2 2 2 Hee Helium 4.002602

Case Study 3

CCIT methodology requires consideration of multiple factors.

Wide range of positive control methods; use them responsibly.

HVLD is not time critical (time zero vs. day 66).

MicroCurrent HVLD generally effective for wide range of product conductivities.

Naturally occurring defects below the $1\mu m$ level can be readily detected using HVLD.

If a technology can accurately and reliably test for defects below the MALL, the debate over the MALL becomes negligible.

Global Quality Solutions

Thank You!

Tony Stauffer/Tatiana Ponce-Simental contact@ccit.com USA: +1 914 337 2005 Switzerland: +41 21 805 0020 <u>www.ptiusa.com</u> <u>www.ccit.com</u>

CCIT Laboratory – Pti-Europe

Address: CCIT s.a. Chemin du Glapin 4 1162 St-Prex Switzerland

© Copyright 2015 Packaging Technologies & Inspection

Acknowledgements to staff members of Pti and CCIT