Container Closure Integrity: Regulations, Test Methods, Application

Test Method Development and Validation

Instructors

Lei LI, Ph. D.; Eli Lilly and Company; <u>lileix@lilly.com</u>
Allison Dill, Ph. D.; Eli Lilly and Company; <u>dillal@lilly.com</u>

With significant contribution from Dr. Dana M. Guazzo PhD, RxPax, LLC, dguazzo@rxpax.com

Test Method Development and Validation

- A. Positive and negative controls, masters, blanks
- B. Instrument/equipment qualification
- C. Method development
- D. Method validation

Why Develop and Validate

- No CCIT method is applicable to all product-package systems
- Same package, Different products → Separate methods
- Different packages, Same product → Separate methods
- Same package, Same product, Numerous study goals
 → Separate methods
- Leak detection is an <u>Analytical Procedure</u>, **not** a standard method

Connecting People, Science and Regulation

3

Young and Zurawlow, PDA Europe Parenteral Packaging, 4 March 2015

J. Young, B. Zurawlow. Optimized CCI Test Method Dev. and Val. Approaches, PDA Europe Parenteral Packaging Conference, Frankfurt, Germany, 4 March 2015

CCIT development and validation requires appropriately designed and assembled product-package units

Negative controls – product-packages with no known leak

Used to demonstrate method performance with good packages

Used in method development and validation studies

Positive controls – product-packages with intentional leak

Used to demonstrate method's ability to detect leaks

Used in method development, validation studies

Used in system suitability checks for some methods

Master – No-leak CC model, OR a designated set of CC units

- Used as a routine test system performance check
- e.g., Such a model may be a replica of the CC in plastic or metal

Blanks are also included in some test methods

- Used to establish method baseline performance
- e.g., Liquid tracer leak detection by UV/Vis spec analysis employs a blank solution without tracer element as a standard

Blanks are <u>not</u> negative controls

Population set should consider variations in:

- Component lot material
- Dimensions
- Component or finished product-package processing
- Assembly

Small Defects

Sizes:

- Range from ≤ to ≥ the estimated detection limit for test method development
- Range from detection limit to larger sizes for test method validation and routine test verification, as needed

Creation Considerations:

- Package/seal type, dimensions, materials of construction
- Defect creation technology limitations and challenges

Laser-drilled Defects:

- Certified for nominal 'hole' size, although defect is not a hole
- Morphology differs with vendor
- Same material as package

Small Defects

Micro-tubes:

- Beware of using long wide-bore tubes to simulate smaller hole defects. Greatest application: gas mass flow behavior
- Leaks around tube perimeter may influence results
- Material may not be the same as the package
- May be used to simulate channels through wide package seal

Small Defects

Micro-pipettes:

- Most simulates "holes"
- Tips prone to damage
- Leaks around tube perimeter may influence results
- Long pipette air locks may block liquid leak detection
- Material may not be the same as the package

Wire or Other Material at Seal Interface:

- Leak path size unknown
- Appropriate if 'other material' represent a potential routine manufacturing defect

Largest Size or 'Type' Defects

Should simulate various types of defects that could occur

- For TYPE defects, leak path size is not determined
- Defect is described qualitatively

For example

- Missing stopper in vial/stopper package
- Gap in pouch heat seal
- Product inclusion at seal interface
 - e.g., lyophilized-powder on vial seal surface
- Needle tip through syringe needle shield

Typically included in test method development only

Largest Size or 'Type' Defects

Reasons for investigating Type defect detection

Methods may miss larger leaks

Product recalls are often the result of larger leaks

Greater patient safety risk possible from largely leaking packages

Instruments/equipment damage or contamination risk

- Impact should be considered prior to test implementation
- Large defects may need to be culled out by other means, or prevented altogether

Instrument/Equipment Qualification

Operational qualification - Functionality

Performed using the instrument/equipment alone

Calibration tools employed

- Pressure or vacuum gauges/transducers
- Temperature controllers
- Timers

Supported by instrument calibration certifications

Plan for potential for instrument/equipment exposure to leaking product

- Damage
- Downtime for clean-up

Instrument/Equipment Qualification

Performance qualification – Detection limit & reliability

Test sample 'master' plus test fixture(s) employed Master: A no-leak model of the container-closure

e.g.,

- A metal or plastic model of the container-closure
- A small set of actual container-closures

Leakage reference standards employed

e.g.,

- NIST certified helium gas leak standards
- Calibrated micro-calibrator volumetric flow meter
- Size-calibrated micro-orifice

Test Method Development and Validation

Goal: Establish an optimal CCIT for a specific product-package that is

Accurate

Specific

Sensitive

Precise

Robust

Quantitation limit*

Linear*

^{*}method specific

Accurate

Accuracy. The method's ability to differentiate:

Packages that leak above the claimed detection limit

Package that leak below this limit (i.e., do not leak)

Defined according to method outcome

Leak presence Leak rate Leak location

When employing a highly quantitative method

(e.g., helium mass spec or laser-based gas headspace analysis)

Accuracy is the closeness of the outcome to a standard

(e.g., a NIST traceable leak rate standard)

Specific

Specificity. The ability of the method to accurately differentiate between leaking and non-leaking packages, despite interfering factors that may cause false detection

Examples

Helium mass spectrometry (vacuum mode). Helium permeation through the package wall may mask small package leaks, or may be falsely interpreted as leakage

Bubble tests. Trapped gas pockets or package surface gases may outgas and be falsely interpreted as leakage

Sensitive (Detection Limit)

The smallest leak size (or rate) that is <u>reliably</u> detected. Specific for

The product-package
The leak test technology

Verified by testing positive/negative controls over multiple days by multiple operators

(test application may also require multiple labs/instruments)

Method Attributes

Sensitive (Detection Limit)

When expressing a test method's detection limit, include a full disclosure of

Test methodology

Negative and positive control subsets used

Test precision level

Test results

For example....

Example

"The detection limit for method X was determined to be $7\pm2 \mu m$.

Validation studies found defects of this nominal size were detected 95% of the time; all larger defects were detected 100% of the time.

Studies included three replicate test series performed on multiple days by multiple operators in a single laboratory using one instrument.

Detection limit was determined using product-filled packages. Test units in each series included a negative control subset of 300 units (each without defect) and a positive control subset of 90 units (each having a laser-drilled defect ranging in nominal size from 7±2 µm to 15 ±3 µm).

Each defect was independently size-certified by comparing the dry air leakage rate at 1 atm differential pressure (leak inlet pressure of 1 atm versus outlet pressure of approximately 1 Torr) at 25 C to that of standard orifice leaks."

Leak Detection Range

That interval between the smallest to largest leak size (or leak rate) that can be detected by a given leak test method with a suitable level of accuracy and precision.

Just because a leak test is sensitive (low detection limit) doesn't mean it will also detect larger leaks

A Method Attributes

Precise

Precision. The method's ability to yield reliable, repeatable data

Repeatability

- Within the same lab within a short time period
- Same analyst, Same equipment

Ruggedness (aka intermediate precision)

- Within the same lab, Different days
- Within the same lab, Different analysts or equipment

Reproducibility

Different labs, as in a collaborative study

NOTE: Degree of precision to which a leak test method is validated is often a function of resource availability (e.g., one instrument versus multiple instruments) and intended test method application (use of the method at one test site only versus across multiple test sites).

Robust

Robustness. The method's ability to accurately identify leaking versus non-leaking packages despite small but deliberate variations in procedural parameters, providing an indication of the method's suitability during normal usage

Example

Vacuum decay

NORMAL test time: 30sec

ROBUSTNESS verification test times: 28sec and 32sec

Linear

Linearity. The method's ability to elicit test results mathematically proportional to leak path size or leakage rate

Examples

- Laser-based gas headspace analysis
- Tracer gas analysis (vacuum mode)
- Vacuum / pressure decay, mass extraction
 also produce results that correlate to leak size/rate; however,
 outcome seeks to ID leak presence and perhaps <u>relative</u> leak size

Quantitation Limit

Quantitation limit is that lowest leakage rate or leak size that can be determined with accuracy and precision

Example

Laser-based gas headspace analysis

For most methods, detection limit is more meaningful

Protocol

Use random population mix of negative and positive controls Test multiple days by multiple operators, and when possible, using multiple test instruments

Acceptance criteria

All* negative controls pass (no leaks are identified)
All* positive controls fail with leaks at or above the designated detection limit (leaks are detected)

* or **essentially all,** e.g., ≥ 95%

Control Unit Quantities

DESTRUCTIVE methods – New set of units required per each test

NONDESTRUCTIVE methods – Consider repeated test impact

EFFECTS ON POSITIVE CONTROL DEFECTS

HVLD exposure may enlarge glass wall laser-drilled defect

HVLD exposure may close plastic wall laser-drilled defect

Vacuum or pressure exposure may clog leaks with product, debris

EFFECTS ON CONTROL AND TEST PACKAGES

Repeated HVLD exposures may weaken plastic pouch heat seals

Vacuum exposure may cause outgassing of polymeric or elastomeric materials, impacting vacuum decay or mass extraction results

Test Method Validation

Control Unit Quantities

DETERMINISTIC methods

More clearly defined, reliable detection limit

Fewer controls are typically required in development/validation

Positive controls may not be needed for routine testing

Positive controls may not be needed for routine testing

PROBABILISTIC methods

Less reliable, especially when testing smaller leaks near LOD

More controls typically required in development/validation

Positive controls may be needed to verify LOD in routine testing

As more data are generated, a more confident detection limit may be established

Positive Control Utilization

For gas-based CCI methods in which the measurement signal is a direct indicator of leakage

Tracer gas leak detection (e.g., He mass spec – vacuum mode)
Laser-based headspace analysis as a function of time

Positive controls are used

To prove leaks at **specific package locations** can be detected To determine the **impact of product presence** and other factors on leak detection

Positive controls are not used

To confirm **limit of detection**Positive control defect sizes <u>are much larger</u> than these methods' LOD
LOD is a function of instrument capability and can be determined with gas standards

Positive Control Utilization

For OTHER CCI methods in which the measurement signal is a direct indicator of leakage

Liquid tracer leak tests (e.g., dye ingress)

Microbial challenge leak tests

Positive controls are used

- To prove leaks at specific package locations can be detected
- To determine the impact of product presence and other factors on leak detection
- To confirm limit of detection

Positive Control Utilization

For physicochemical CCI methods in which the measurement signal is an indirect indicator of leakage

Vacuum decay/pressure decay/mass extraction Electrical conductivity/capacitance test (HVLD)

Positive controls are used

- To verify that the measurement signal is a function of leak presence/size/rate vs. other interfering factors
- To confirm limit of detection

Microbial Ingress Comparison

Comparison to Microbial Ingress

ORIGINAL USP <1207> states that use of methods other than microbial challenge tests require a comparison to a microbial challenge test

Direct side-by-side study

OR

Indirect by referring to relevant published study data

Some FDA reviewers still request a comparison study

Positive and Negative Controls, Masters, Blanks

Population set of product-packages controls needed

Negative controls: no known leak

Positive controls: with intentional leak

Small leaks used for LOD, method development, validation

Larger type leaks used to understand upper performance limits during method development

Master is used to simulate a no-leak standard for checking system performance

Blanks are not negative controls or masters, but are needed for some test analytical test methods

Instrument/Equipment Qualification

Operational qualification – instrument/equipment functionality

Performance qualification – test system verification using master and leak standard

Method Development and Validation

Final method to be accurate, specific, sensitive, precise, robust, and in some cases, linear, quantitative

Positive controls of small and larger 'type' leaks employed

Leak detection is an analytical procedure, NOT a standard method