

POLYMERS 101 - GLASS 101

PDA TRAINING COURSE EXTRACTABLES – LEACHABLES

Venice 21 – 22 March 2019

Dr. Piet Christiaens

CONTENT

- 1. What is a Polymer?
- 2. Classification of Polymers
- 3. Types of Polymers Examples in Medical Use
- 4. Properties of polymers
- 5. Understanding the Composition of Polymers

WHAT IS A POLYMER?

Polymers 101

1. What is a "Polymer"?

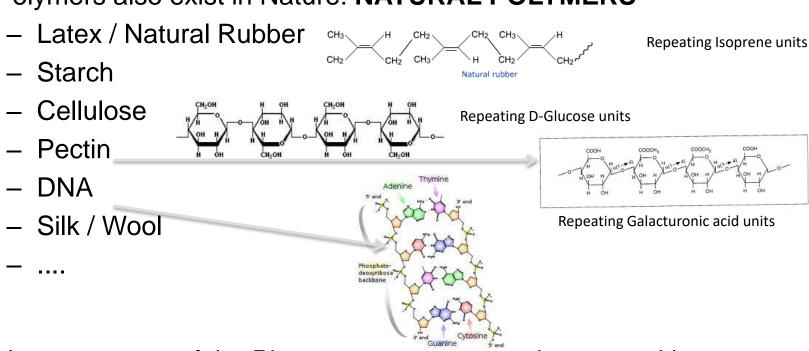
A **polymer** is a chemical compound or mixture of compounds consisting of repeating structural units created through a process of polymerization

Greek words:

```
πολύς (<u>polus</u>, meaning "many, much") 
μέρος (<u>meros</u>, meaning "parts")
```

Refers to a molecule

- whose structure is composed of multiple repeating units
- As a consequence:
 - a characteristic of <u>high relative molecular mass</u> and
 - associated <u>properties</u>.



NATURAL VS SYNTHETIC POLYMERS

Classification of Polymers

Polymers also exist in Nature: NATURAL POLYMERS

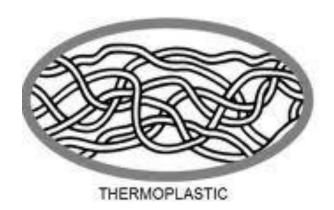
 However, most of the Pharmaceutical Applications are with SYNTHETIC POLYMERS

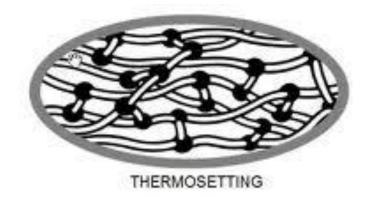
a small fraction are **INORGANIC POLYMERS**

Example: Siloxanes (PolyDiMethylSiloxanes; PDMS) (SILICONE)

However, most of the Polymers are ORGANIC POLYMERS

Examples: see next slide


SYNTHETIC Polymers

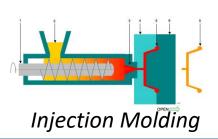

Some Examples of *ORGANIC POLYMERS*

THERMOPLASTIC VS THERMOSET POLYMERS

"Entangled" Polymer Chains

Crosslinked Polymer Chains

THERMOPLAST VERSUS THERMOSET


THERMOPLAST:

Polymers that soften when heated and become firm again when cooled

Giving the **final form to a container/component** is based upon this principle:

Molding, Extrusion...

Examples: LDPE, HDPE, PP, PC, EVA,...

Extrusion

THERMOPLAST VERSUS THERMOSET

THERMOSET:

Polymers that soften when heated and molded subsequently BUT

Decompose when Reheated

Thermoset polymers are typically "cross linked"

Example: Bakelite

Fenol Formaldehyde Resin

Rubbers

Silicone tubings

TYPES OF POLYMERS

TYPES OF POLYMERS - HOMOPOLYMERS

A homopolymer is a polymer built from a sequence of identical monomers

EXAMPLES:

- OPolyethylene
- •Polypropylene
- oPVC

TYPES OF POLYMERS – COPOLYMERS

When two or more different monomers unite together to polymerize, their result is called a copolymer

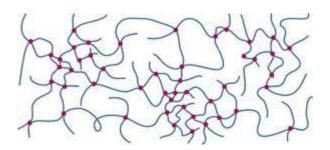
Examples: Poly EVA

$$\begin{array}{c|c} - & CH_2 - CH_2 \\ \hline & CH_2 - CH_2 \\ \hline & CH_2 - CH_2 \\ \hline & C \\$$

Regular Copolymer A-B-A-B-A-B-A-B-A-B-A-B-A-B-A-B-A

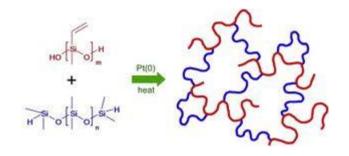
Examples:PET

Block Copolymer

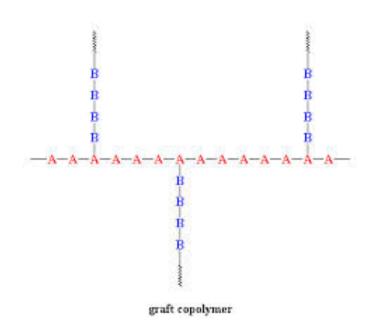

Examples

A-A-A-B-B-B-B-B-B-B-B-B-A-A-A

SIS Elastomer



TYPES OF POLYMERS – CROSS-LINKED Polymers


Isoprene/ Butadiene RUBBERS

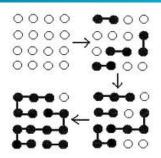
Silicone rubbers (Pt-cured)

TYPES OF POLYMERS – GRAFT COPOLYMERS

CLASSIFICATION BASED UPON POLYMERISATION MECHANISM

CHAIN GROWTH

Example 1: Cationic Polymerization of "Butyl Elastomer"


Understanding
Polymerization of Butyl
Elastomer helps to
understand the formation
and presence of rubber
oligomers (see presentation
E/L for Parenterals – Day 2)

Example 2: Radical Polymerization of Polystyrene

styrene
$$CH_2 = CH$$
 \rightarrow $R - CH_2 - CH$ \rightarrow $R - CH_2 - CH$ \rightarrow $R - CH_2 - CH$

STEP GROWTH (definition)

Examples: Polyaddition, polycondensation - Nylon 6,6

Step-Growth Polymers

Step-Growth Polymers

OH

Adipic Acid

OH

$$H_2N$$

Hexamethylenediamine

HO

 $(CH_2)_4$

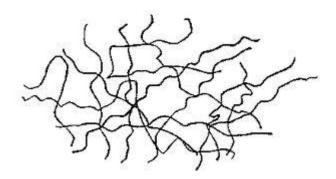
OH

 H_2N
 $(CH_2)_6$
 NH_2
 280° C

 $(CH_2)_4$
 N_1
 $(CH_2)_6$
 N_2
 $(CH_2)_4$
 N_2
 $(CH_2)_6$
 $(CH_2)_4$
 N_3
 $(CH_2)_6$
 $(CH_2)_4$
 N_4
 $(CH_2)_6$
 $(CH_2)_4$
 $(CH_2)_6$
 $(CH_2)_4$
 $(CH_2)_6$
 $(CH$

Seen as an Extractable /Leachable

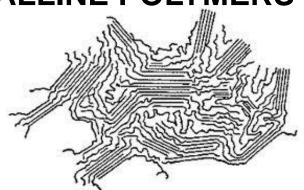
Regular Copolymer A-B-A-B-A-B-A-B-A-B-A-B-


POLYMER PROPERTIES

1. MORPHOLOGY

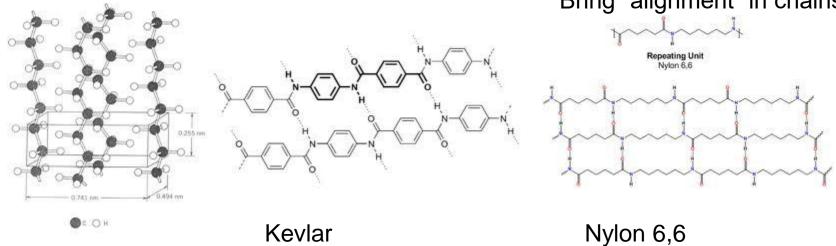
1. AMORPHOUS Polymers

Because of


- Irregularities in Polymer Structure
- The Nature of the Polymer
- Cross-linking (for certain Polymers)

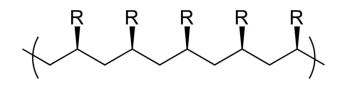
Nº intermolecular bonds (e.g. Hydrogen bonds, Van der Waals forces) will lead to an alignment of the polymer chains

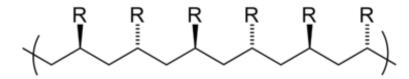
Examples: PS, PVC, SAN, ABS, PMMA, PC, PES



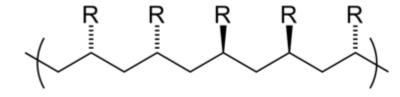
2. (Semi-)CRYSTALLINE POLYMERS

Hydrogen Bonds (e.g. PA) Van der Waals Forces (e.g. Polyolefins)


Impact of Stereochemistry of a polymer on physical properties Bring "alignment" in chains


AMORPHOUS versus CRYSTALLINE

Impact of **StereoChemistry** of a polymer on physical properties



Isotactic

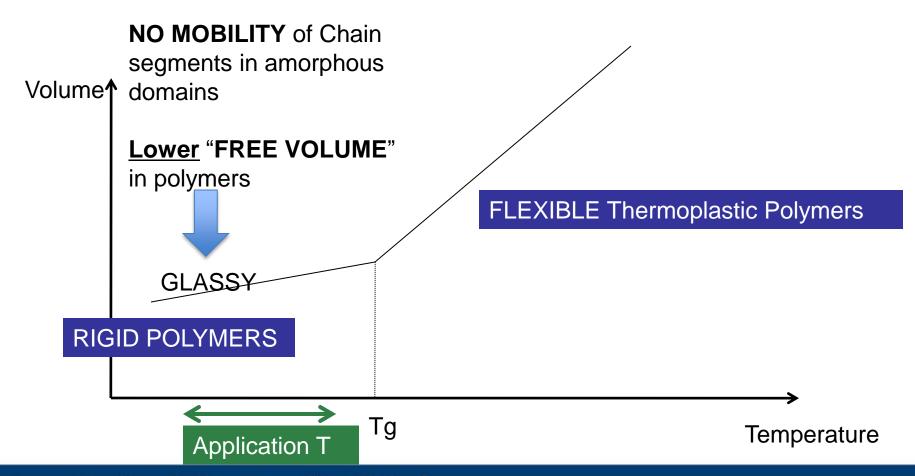
Typically semi-crystalline (e.g. PP via Ziegler-Natta polymerisation)

Syndiotactic *PS: Syndiotactic PS is semi-crystalline*

Typically <u>amorphous</u> polymers PS: Atactic PS is amorphous

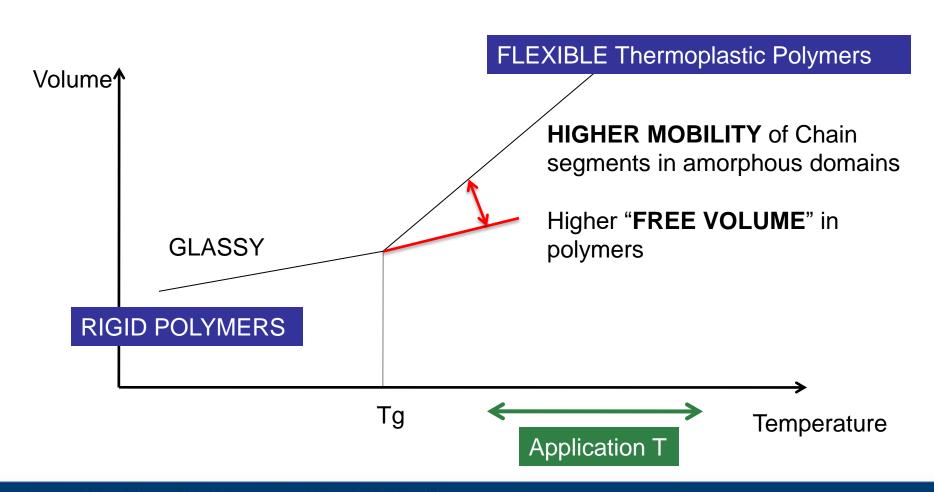
TACTICITY MODULATORS, SOMETIMES FOUND AS EXTRACTABLES

2. GLASS TRANSITION T° (Tg)

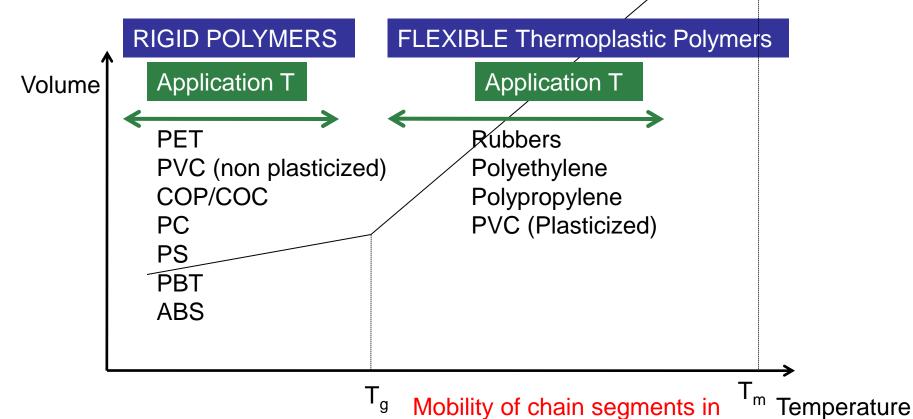

DEFINITION

GLASS TRANSITION TEMPERATURE (Tg):

Temperature when a Polymer goes from a "glassy" state (< T_g) to a "rubber" state (> T_g)



WHAT IS **RIGID** PACKAGING?



WHAT IS **FLEXIBLE** PACKAGING?

WHICH PACKAGING?

amorphous domains

Dr. H. Rengel, ECA Course 2006

Examples of T_g for different materials

LDPE
$$T_g = -125^{\circ}C$$

POM $T_g = -50^{\circ}C$
PP $T_g = -25^{\circ}C$
PBT $T_g = +70^{\circ}C$
PVC $T_g = +81^{\circ}C$ (non plasticized)
ABS $T_g = +110^{\circ}C$
PC $T_g = +150^{\circ}C$

The T_g of a material will also have an impact on the migration behavior of a material!

COMPOSITION OF COMMERCIAL POLYMERS

COMPOSITION OF **COMMERCIAL POLYMERS**

- Additives
- ∘ Residues
- oCatalysts
- oOligomers
- Degradation Compounds from Polymers
- Degradation Compounds from Polymer Additives

1. ADDITIVES

Anti-Oxidants

Plasticizers

Photostabilizers

Slip Agents

Antiozonants

Coupling Agents

Lubricants

Acid Scavengers

Peroxides / Crosslinkers

Blowing Agents

Pigments/Colorants

Antistatic Agents

Metal Chelators

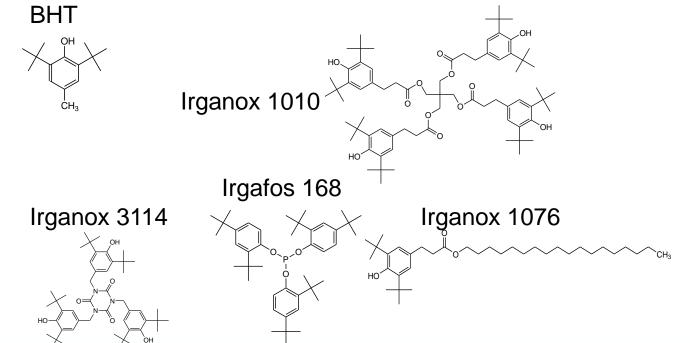
Adhesives

Catalysts

Clarifying Agents

Antifogging agents

Fillers


(Red: coming with some examples)

Function: assuring protection against thermal and oxidative degradation during <u>shelf</u> <u>life</u> of polymer (primary antioxidants) or during <u>processing</u> (secondary anti-oxidants)

- Primary Anti-Oxidants: Free radical scavengers eg Sterically Hindered Phenols
- Secondary Anti-Oxidants: Peroxide Scavengers –eg Irgafos 168

European Pharmacopoeia lists a.o. the following Anti-Oxidants:

Hostanox 03

Irganox 1330

Plasticizers

Function: Gives the plastic flexibility and durability Plasticizer requirements:

- Low Water solubility (low extractibility)
- Stability to heat and light
- Low Odor, taste and toxicity

Diethylhexyladipate

$$H_3C$$
 O
 O
 CH_3

Diethylhexylphthalate (DEHP)

Stearic Acid

н₃с Он

Diethylhexylsebacate

Photostabilizers

Function: Protects the Polymer from UV-Degradation (exposure to sunlight)

Tinuvin 328

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Tinuvin 770

$$H_3C$$
 CH_3 H_3C CH_3 CH_3

Tinuvin 622

Slip Agents

Function: reduce the "friction" or "film adherence", important when producing bags from films

Erucamide

O NH₂

Oleamide

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Remark:

because of their specific properties, Slip agents will be widely detected as Leachables!

Acid Scavengers

Function: Protects the polymer from "acid attacks" through conversion of strong acids (high degradation impact) to weak acids (low degradation impact)

Pigments / Colorants

Function: Gives the polymer/rubber the desired color (cosmetic)

Examples: Carbon Black (PNA's!), TiO₂ (white), Fe₂O₃ (red), Pigment Green 07

Solvent Red

oiveni Red

Solvent yellow 114

Solvent Green 03

Remarks: beware of the composition of the Masterbatch!

Clarifying Agents (Nucleating Agents)

Function: by controlling the crystallisation (nucleation) when cooling off PP, it becomes transparent.

NC-4
$$C_2H_5$$

$$C_2H_5$$

$$C_2H_5$$

2. RESIDUES

Residues from the production process (non-limitative)

Solvents

MIBK

IPA

Monomers

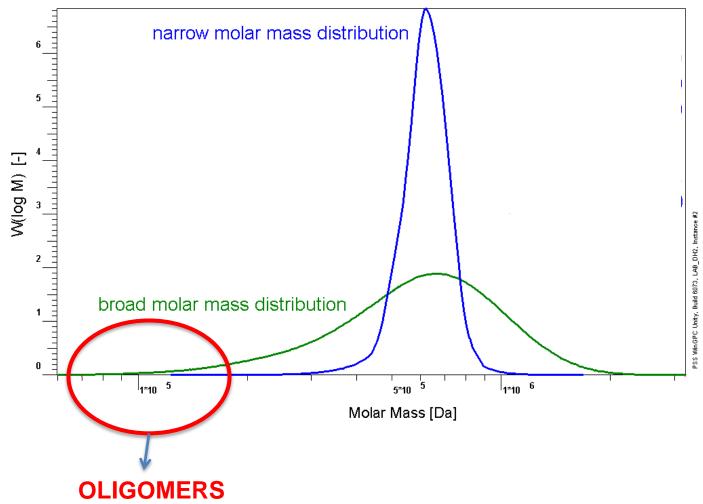
Styrene

Caprolactam

$$H_2C$$
 CH_3
 CH_3

Methyl methacrylate

Isoprene


Catalysts

Titanium
Zirkonium
Cobalt
Aluminum
Iron
Hafnium

3. OLIGOMERS

OLIGOMERS: Examples

PET Nylon 6 Nylon 6.6 **Butyl Rubber PBT** Polyester adhesive HN H₃C, CH₃ CH₃ H₃C, CH₃ CH₃ H₃C H₃C H₃C H₃C CH₃

Connecting People, Science and Regulation®

Other typical oligomers from Silicone, PP, PE, Adhesives ...

4. POLYMER DEGRADATION COMPOUNDS

Polymer degradation Compounds

Origin: Oxidative degradation of the polymers

(when the polymer is not properly stabilized via anti-oxidants)

Example of Polymer Degradation Compounds from Polypropylene

$$H_3C$$
 CH_3
 CH_3

$$H_3C \xrightarrow{CH_3} OH$$

$$H_3C$$
 O

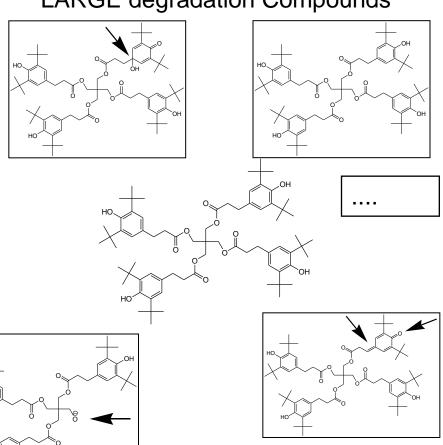
Acids

Aldehydes

Alcohols

Ketones

Polymer Fragments


5. POLYMER ADDITIVE DEGRADATION COMPOUNDS

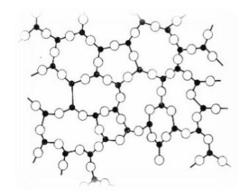
Example Degradation of Irganox 1010

SMALL degradation Compounds

LARGE degradation Compounds

WORKSHOP EXTRACTABLES - LEACHABLES

Dr. Piet Christiaens



What is Glass?

An inorganic fused substance that has been cooled to a rigid condition without crystallization (e.g. Supercooled amorphous substance)

Why Glass as packaging material?

- Well-known material
- Transparent
- Heat resistant
- Good barrier properties: gas & vapour tight
- Chemically and physically (quite) inert.

J. Zuercher, ECA Course E/L, Prague 2010

Glass in Pharmaceutical Packaging

- Ampoules
- Injection Vials
- Infusion Bottles
- Syringes
- Carpules
- Bottles for oral drug products
- Bottles for solid preparations

J. Zuercher, ECA Course E/L, Prague 2010

Composition of Glass – Function of Ingredients

- SiO₂: Backbone structure
- CaO: Increasing hardness & Chemical resistance
- Al₂O₃: Increasing Chemical Resistance
- Na₂O & B₂O₃: Lowering the melting point
- Fe₂O₃, TiO₂: Amber Glass
- CuO: Blue Glass
- Mn³⁺: Violet Glass

J. Zuercher, ECA Course E/L, Prague 2010

Glass Types

Glass Type	General Description	Uses	
I	High resistant Borosilicate	Parenteral Preparations	
II	Treated Soda-Lime	Acidic and Neutral Parenteral Preparations	
III	Soda Lime	Not for Parenteral Preparations	
NP	Soda-Lime	Oral / Topical	

Glass Composition for different Glass Types:

Component	Type I (Borosilicate)	Type II, III, NP (Soda-Lime)	
SiO ₂	70 - 73%	69 - 73%	
B_2O_3	10%	0 - 1%	
Na₂O	2 - 9%	13 - 14%	
Al_2O_3	6 - 7%	2 - 4%	
BaO	0,1 - 2,0%	0 - 2%	
K ₂ O	1 - 2%	0 - 3%	
CaO	0,7 - 1,0%	5 - 7%	
MgO	0 - 0,5%	3 - 4%	
ZnO	0 - 0,5%	-	

Metal Profile of a Type I - Clear Glass Vial (ICP-MS)

Main Metals	Amount (%)	Trace Metals (> 1µg/g)	Amount (μg/g)
Si	>30%	Mg	61
Al	2%	Ва	21
Na	2,40%	Ce	8,8
В	5,50%	Ti	6,7
K	0,1%	Hf	6
Ca	0,036%	Mo	4,8
Fe	0,7 - 1,0%	Υ	2,8
Zr	0 - 0,5%	La	2,5
		Sr	1,7
		Pd	1,6
		Ga	1,2
		Pb	1

Zuccarello et. Al., PDA, J Parm Sci technol 63, 339-352, 2009

Parameters, impacting the Glass Leachables

- o Filling Volume: smaller filling volumes show higher leachable concentrations
- Storage time: leachable concentrations increase over time
- Sterilization / Sterilization time: longer autoclaving cycles, higher concentrations
- **Sterilization Temperature**: higher temperatures, higher concentrations
- Type of contact solution:

[Si]: Lactic acid < acetic acid < ascorbic acid < malic acid < tartaric acid < oxalic acid < citric acid **Complexing agents**, such as EDTA may also impact the metal release from Glass

olmpact of pH: higher pH, higher [Si] release.

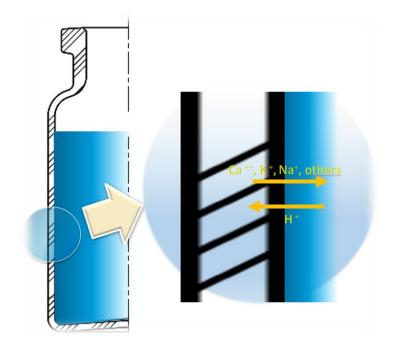
In general, more metals are leaching out of glass at pH>9

Risk of Glass Leachables

- Most observed Metal Leachables from Glass:
 - Si and Na as MAJOR leachables, K, B, Ca & AI as MINOR LEA, Fe: traces
- o Alkali release: pH shift of unbuffered solutions
- Silicon (Si) release:increased particle load, delamination!
- Aluminum release:

Aluminum can accumulate in patients with reduced renal function, causing e.g. neurological diseases

- OPotential Arsenic (As) release:
- glass can contain arsenic oxide (III) as a fining agent to improve glass tranparency. Arsenic is toxic!
- \circ Release of metals, causing precipitation with some salts, present in the DP $Ba \Rightarrow BaSO_4$, $Al \Rightarrow Al(OH)_3$


How to (try to) prevent Glass Leaching

1. Chemical surface treatment

(NH₄)₂SO₄ is injected before annealing

$$(NH_4)_2SO_4 \rightarrow (NH_4)HSO_4 + NH_3$$

$$2Na^{+} + (NH_4)HSO_4 \rightarrow Na_2SO_4 + NH_3 + 2H^{+}$$

Afterwards, rinsing with Water to remove soluble NaSO₄

Result: lower pH shift because lower amounts of Na will leach

How to (try to) prevent Glass Leaching

2. Put a Coating on the Glass

Deposition of SiO_x layer as an inert glass layer

e.g. Schott Type I Plus

How to (try to) prevent Glass Leaching

3. Siliconization

Siliconized surfaces are hydrophobic, reducing the wettability of the container surface

Thus siliconized glass surfaces are reducing the potential of interactions with aqueous fillings

The release of alkali ions is reduced, compared to non-siliconized containers

However, Siliconized surface may then release organic compounds! (e.g. Siloxanes)

