

Connecting People, Science and Regulation

Information to Practical work 1+3

Dr. Andrea Allmendinger

Late-stage Pharmaceutical and Processing Development Hoffmann-La Roche, Basel

andrea.allmendinger.aa1@roche.com

25-29 MARCH 2019 OSTERODE (HARZ), GERMANY

pda.org/eu/fdp2019

2019 PDA EUROPE TRAINING

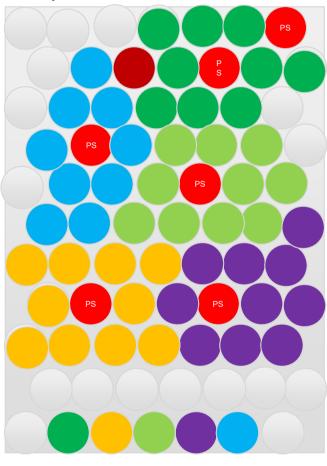
Freeze Drying in Practice

TO DO: Preparation

- 1. Compounding of formulations
 - Calculation of composition
 - Compounding
- 2. Filling
- 3. Stoppering
- 4. Freezing experiment with distilled water under vacuum to develop a general understanding of the critical temperature

Materials:

- active ingredients and excipients (BSA, Sucrose, Mannitol, His, HisHCl-H2O, PS20)
- water for injection
- Schott bottles and beakers; measuring cylinder
- calculator
- scale, magnetic stirrer, spatula
- pH-meter
- pipettes
- sterile filters and vacuum pump if available
- 20 mL vials
- Iyo stoppers
- thermo couples/ product sensors (2. day)


Composition of formulations

#	Formulation	BSA	Excipient	Solid content (excipients)	Buffer system	Surfactant	Tg'	Fill volume	
1	Formulation 1	25 mg/mL	240 mM Sucrose	~80 mg/mL		0.02% (w/v) Polysorbat 20	~ -27	10 mL	
2	Formulation 2/3	-	240 mM Sucrose	~80 mg/mL	20 mM HisHCl pH		~ -32	10 mL	
3								5 mL	
4	Formulation 4	-	120 mM Sucrose	~40 mg/mL	6.0		~ -32	10 mL	
5	Formulation 5	-	220 mM Mannitol	~40 mg/mL			~-1	10 mL	

Preparation - Loading

Proposal:

- 3 Lyophilizers / 3 groups
- One shelf (77 vials) will be fully loaded per group and lyophilizer
- Prepare your own loading scheme with different formulations including PAT sensors

- Calculate the volume needed per formulation depending on the loading scheme. Account for at least 10% overage.
- 2. Calculate the amount of excipients.
- 3. Calculate the amount of buffer needed.

As we are 3 groups – please consolidate and discuss who is preparing what and how much!

Composition of formulations:

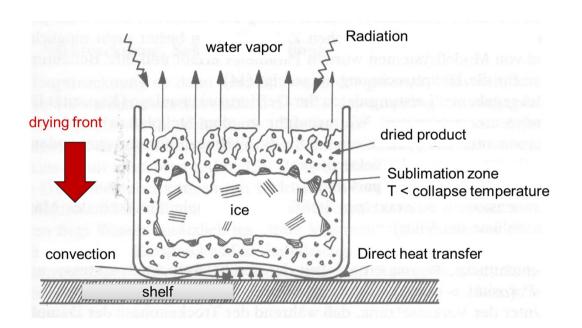
Formulation #	Number of vials	Fill volume	Total volume needed	Total volume prepared* (L)	BSA concentration (mg/mL)	BSA (g)	Excipient concentration (mM)	Excipient concentration (g/L)	Excipient (mg)	Tensid + buffer system
1		10 mL			25 mg/mL		240 mM Sucrose			
2		10 mL			-	-	240 mM Sucrose			20 mM HisHCl pH 6.0:
3		5 mL			-	-				
4		10 mL			-	-	120 mM Sucrose			0.02% (w/v) PS20
5		10 mL			-	-	220 mM Mannitol			
Total										_

^{*} Include 10% loss

Molar Mass: Sucrose 342.3 g/mol Mannitol 182.2 g/mol

Buffer receipt 1L:

- 2.196 g of His-HCl Monohydrat
- 1.477 g of Histidin, freie Base
- Ad 1 L



- 1. Prepare the buffer and add the surfactant.
- 2. Compound the formulations by using the prepared buffer system and filter
- 3. Fill the formulations into the glass vials and stopper them completely (next day:)
- 4. Position the stoppers to allow for sublimation
- 5. Position the thermo couples
- 6. Load the lyophilizer
- 7. Program your recipe and install/connect all PAT tools that you would like to use
- 8. Start the program

Placement of thermo couples

For the correct position of a thermo couple / sensor to monitor product temperature, the tip of the sensor needs to just above the middle of the vial bottom.

