Residual Moisture / Water Content

Determination of water content according to Karl Fischer in free dried products and stoppers

Birgit Faas Product Manager KFT Metrohm Deutschland

introduction & basics

of Karl-Fischer-Titration

COPYRIGHT © PDA 2018

differentiation

residual moisture	water content according to KF		
moisture analyzers using infrared-, halogen-, microwave-heating	titrator, using electrode for indication		
loss on drying under given conditions	water content		
gravimetric method	chemical reaction with water		
all volatile constituents, not only water	specific for water		
chemically bound water not found completely	be aware of side reactions		

properties of freeze dried products

- small sample sizes
- small water content
- packed in glass vials of different sizes
- closed with various stoppers and caps
- not equilibrated with laboratory conditions / humidity
- packed under vacuum
- containing hazardous APIs (active pharmaceutical ingredients)

Karl Fischer reaction

CH₃OH + SO₂ + RN (RNH)SO₃CH₃

$H_2O + I_2 + (RNH)SO_3CH_3 + 2 RN \implies (RNH)SO_4CH_3 + 2 (RNH)I$

COPYRIGHT © PDA 2018

volumetric and coulometric KFT

2 possibilities to add iodine to the reaction

volumetric titration

• coulometric titration

pda.org

COPYRIGHT © PDA 2018

volumetric KFT

- dosage of a volume
- analytical method
- iodine is added as a standard solution / titrant
- the consumption of titrant is used to calculate the water content
- titer determination is required
- measuring range: approx. 100 mg/kg 100 %

coulometric KFT

- dosage of electric current
- absolute method
- iodine is generated by oxidation of iodide at the anode of the generator electrode
- the applied amount of electrical charge is used to calculate the water content
- titer determination is not required
- measuring range: approx. 1 mg/kg 5 %

coulometric KFT

Copyright © Metrohm

COPYRIGHT © PDA 2018

volumetric and coulometric KFT

COPYRIGHT © PDA 2018

techniques of application

principle of evaporation technique

principle of evaporation technique

workflow of evaporation technique

typical ovens for evaporation technique

typical ovens for evaporation technique feature: customized oven inserts

COPYRIGHT © PDA 2018

typical ovens for evaporation technique feature: temperature ramp

typical ovens for evaporation technique feature: temperature ramp

customer sample

as an example for KF water determination

COPYRIGHT © PDA 2018

sample: Elecsys Anti-HCV

- antibody test
- reagent to diagnose hepatitis C virus infection through the antibody Anti-HCV

https://www.webmd.com/hepatitis/ss/slideshow-hepatitis-c-overview

feasibility: water determination of sample

direct titration

contamination of the sample and KF-cell with humidity

handling in glove box neccessary

sample should be soluble

extraction

sample must be soluble, otherwise a different technique must be applied

evaporation technique

feasibility: solubility of sample

 Coulometric titration cell after sample was added to the cell and titrated

→sample did not dissolve completely and thus clogs the anode of the generator electrode

feasibility: sample vials

specification:

- vial diameter: 10.0 ... 32.0 mm
- immersion depths of vial: 20.0 ... 45.0 mm
- vial sizes:

2R ... 25R or 2H ... 25H

feasibility: sample vials

- Maximum vial diameter: 22.2 mm
- immersion depths of vial: 30 mm
- vial sizes:

 \rightarrow label must be removed

feasibility: sample stoppers and caps

COPYRIGHT © PDA 2018

feasibility: sample stopper and cap

- type of cap: screw cap GL14 / closed center / polymer
- type of stopper: rubber / cruciform
- height of stopper: 13 mm / no thin center for injection
- \rightarrow exchange screw cap \rightarrow use temperature stable cap with hole
- \rightarrow use long needle

It needs to be clarified:

- which temperature has to be applied to make the sample release the water?
- Up to which temperature are the rubber stoppers heat-resistant?
- Up to which temperature are the screw caps heat-resistant?
 - → the feasibility is given, if the temperature of the sample is lower than the decomposition temperatures of the screw caps and stoppers

temperature ramp

Elecsys R1

temperature ramp

sample: Elecsys Anti-HCV

temperature gradient: 1°C/min

temperature range: 50 – 150°C

<u>carrier gas:</u> nitrogen

temperature ramp

results: sample

Parameter:

- temperature: 110 °C
- flow: nitrogen 50 mL/min
- determination time: approx. 6 8 min
- sample size: 85 mg

Sample: Elecsys Anti-HCV parameter	n	water [µg]	water content [%]	RSD [%]
original vial + original stopper	2	509	0,60	3,25
original vial + silicone/PTFE septum	3	507	0,60	5,13
transfered to standard vial + septum	3	928	1,09	3,70
diramptitration in month metric veal in rea	gent	1435	1,69	

water determination of freeze drying closures

according to DIN ISO 8362-5 appendix A

COPYRIGHT © PDA 2018

water determination in closures according to DIN ISO 8362-5 appendix A

- heat oven to a temperature of (140±2) °C
- purge the oven with dry nitrogen at a suitable rate
- wait for low blank drift
- constant slope of the cumulative graph water/time when running a blank
- correct determination of water of a control solution
- correct determination of water of sodium tartrate
- daily checks are recommended

water determination in closures according to DIN ISO 8362-5 appendix A

Procedure: sample preparation

- use tweezers or wear gloves when handling the closures
- keep in original packing or in airtight containers
- handle under standard laboratory conditions (T= (23±2)°C; RH=(50±5)%
- take 10 closures and cut 1 segment from each
- Weigh to an accuracy of 0,1 mg

water determination in closures closures according to DIN ISO 8362-5 appendix A

determination:

- start the determination
- record the curve of water content versus time for at least 90 min
- run the test in duplicate

water determination in closures according to DIN ISO 8362-5 appendix A

extrapolation & calculation:

- for extrapolation use the line drawn through the values at 70,75,80,85,90 min
- calculate the water content by using the amount of water of the intercept

Thank you for your attention. Questions?

I am also happy to answer questions that arise later.

Please contact me:

■birgit.faas@metrohm.de

