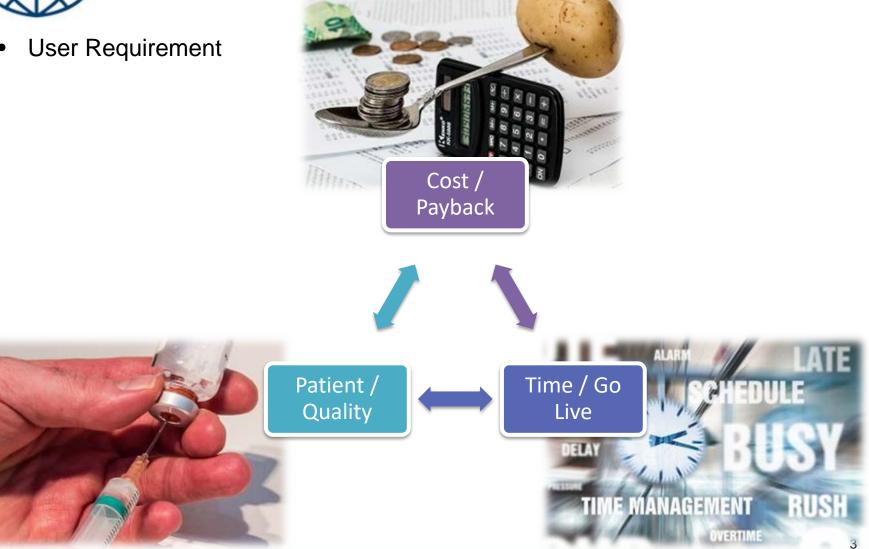


• Theory 4

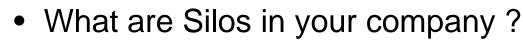
Selection and purchasing of an automated inspection system

- Technical requirements
- Integration into existing processes, lines/ machines and systems
- Cost and effort considerations
- Risk Assessment

- When procurement of AVI machine is foreseen you may consider all these aspects:
- User Requirements, typically the URS document
- Engineering specifications
- EHS rules
- Contractual terms
 - Payment terms / conditions
 - Project mngt / key milestones
 - Target KPIs
 - Training
 - Key milestones (commisioning / validation / ramp up)



Theory 4: Selection and purchasing of an automated inspection system Some challenges

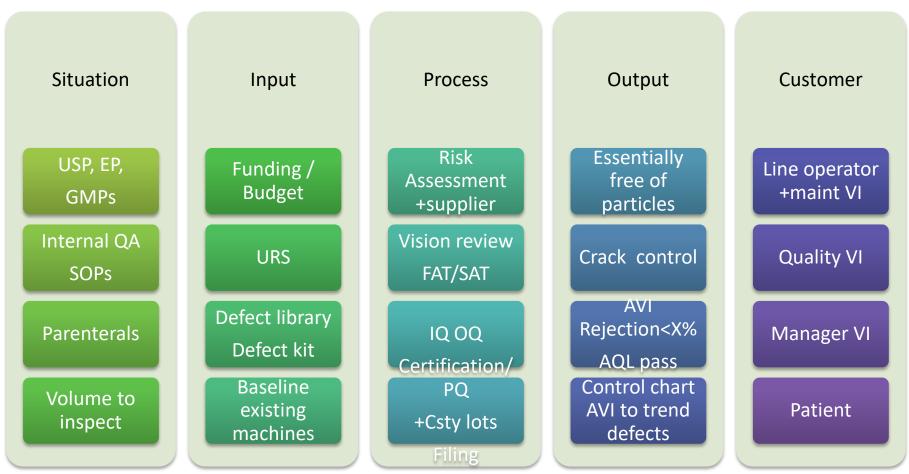


•

Theory 4: Selection and purchasing of an automated inspection system Company culture : work across boundaries

- Production
- Maintenance
- Engineering
- Procurement
- QA
- QC
- RA
- PMOs

. . . .


• EHS : Ergonomy

1 URS+1 Contract

• Need for SIPOC before Deep Dive into details

Theory 4: Selection and purchasing of an automated inspection system Topics to cover

• Topics to cover:

URS	Eng. Spec.	Contracts
✓ User needs	✓ electrical	✓ R&R
✓ Products	✓ Pneumatic	✓ certifications
 Prim. packaging 	✓ Automation	 ✓ Document approval
✓ KPIs	✓ ERES	✓ User
✓ Kits	✓ Back up & restore	✓ KPIs target
✓ validation	✓ Alarms mngt	✓ Payment terms
✓ documentation		✓ Key milestones
✓ training		✓ KM
✓ maintenance		✓ Commissioning FAT SAT
✓ Spare part		✓ Support mentoring

Theory 4: Selection and purchasing of an automated inspection system Integration into existing processes

- Where does it fit in
- Inline after Filling
- Standalone "island concept"
- Before labelling

- Or all in one line / feedback or bottlenecking ?
- How to maintain clean room conditions
- When integrated in existing line
 - How to connect the parts
 - Who will be responsible for this

• What about AQL sampling: manual, automatic

Theory 4: Selection and purchasing of an automated inspection system Integration into existing processes

- Online versus offline
- Inline after filling
 - More appropriate in case cold chain
 - But influenced by process circumstances before
- Offline
 - Independent of the process circumstances before
 - But more labor
 - More handling, more risks, e.g. Mix-ups

Product behavior

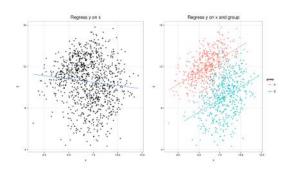
- Viscous. If so the introduction of air bubbles is likely
- Humans can distinct air bubbles from particles far better
- Offline would be more appropriate

Theory 4: Selection and purchasing of an automated inspection system Integration into existing processes

Product behavior

- If your products are a mix of waterlike to viscous
- Make it two ways. Partly inline, partly offline

AVI in general


- These machines are complex
- They may go in error
- you might be confronted with unexpected high ejects
- Buffering and offline inspection should be considered

Representative test kits are prepared

- Defect units (defined and stable)
- Worst case
 - Product and/or container
- Good units

MVI results on these test kits are know

- Statistical results, e.g. through Knapp Kushner
- Human limits
 - Particle size
 - Areas not easy to inspect

There are only 4 mayor machine suppliers

Your URS and engineering specs are the basis

- The machine supplier must meet these requirements
- The statistical result on these test kits must be equal or better than MVI

AVI must perform equal or better than MVI

- How much better
- Against what costs
- Is manual inspection of AVI ejects allowed
- AVI is not perfect
 - 100% detection of everything not wanted is impossible

Theory 4: Selection and purchasing of an automated inspection system Considerations when Selecting

Apart from wanted performance, machine price only

- Printers are sold at/or below cost price
 - They earn in selling ink
- What about spare parts
 - What do you minimal need
 - Life cycle?
 - Costs?

Mechanical you can get everything

The Price?

GOOD QUESTION!

- OEM (Original Equipment Manufacturer)
- Third parties
- Unlimited in time

Theory 4: Selection and purchasing of an automated inspection system Considerations when Selecting

Electrically

- Lifecycle is short
- Ongoing development is rapid
- Older parts become obsolete in short time
- Availability is limited in time

• Machine suppliers often don't produce these parts, they buy on the market

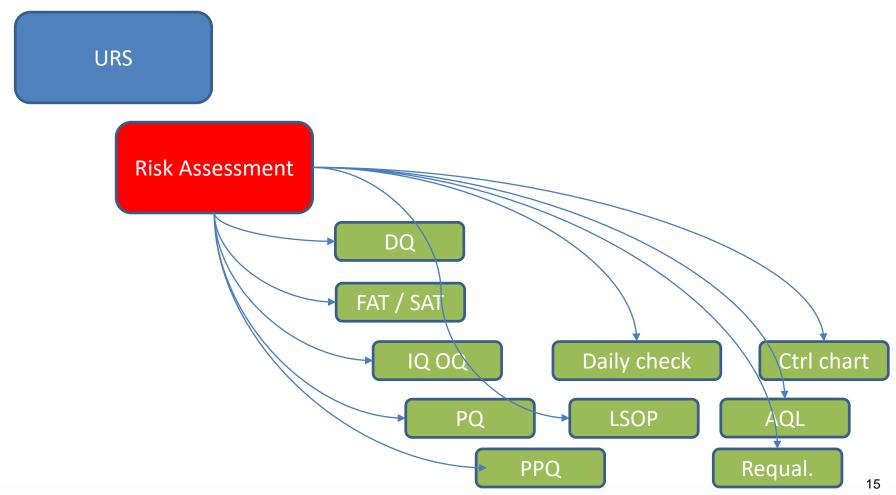
Cameras/LEDs

• The same

Machine supplier guaranties

- Spare parts are available for 10 ? 15 years?
- Equal with LEDs and cameras?

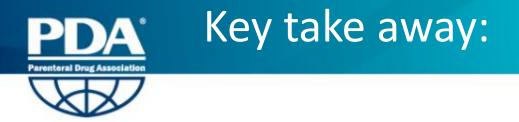
The FMEA approach


- Less intensive as a Hazop study, but necessary (see PDA TR 44)
 - You need to identify your possible pitfalls

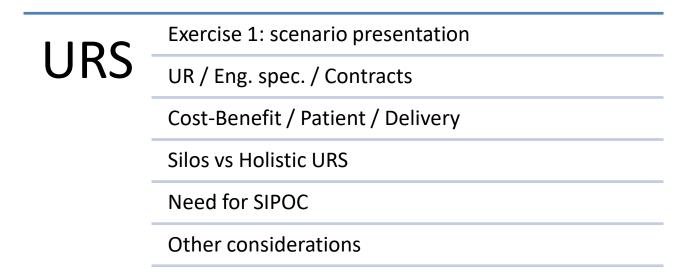
FUN	CTIONS	POTENTIAL FAILURE MODES					
Item / Sub-Item / Function Function		Potential Failure Mode	Potential Effects of Failure	SEVERITY	CLASS		
	Body	Blind spot size	Travel in comfort [L]	8	Safety	ŀ	
	E-MA		Have fun driving [M]	6	Safety	1	
	Suspension	Cornering ability	Passenger safets (crash avoidance) [M]	10	Safety	•	

	POTENTIAL CAUSES				RECOMM			
	Potential Causes / Mechanisms of Failure	OCCURRENCE	Current Design Controls Prevention	Current Design Controls Detection	DETECTABILITY	RPN	CRITICALITY	Recommended Actions
	Line of Sight obstructions	8	Feedback from user evaluations	None	10	480	48	Review consumer test data
	Line of Sight obstructions	6	Feedback from user evaluations	None	10	360	36	Review consumer test data
Connecting People, Science	Unreliable components	5	Perform reliability predictions of critical components	Computer diagnostic system	7	350	50	Analyze reliability models and predictions

FMEA can mitigate risks in multiples pathways :



Theory 4: Selection and purchasing of an automated inspection system After buying


FAT

- Should not be on user site
- Use supplier facilities / competencies
- If not passed
 - Due to minor issues
 - Due to mayor issues
- Never expect it will be solved during SAT
- => Punch list is key at supplier site

• In this section you have learnt:

