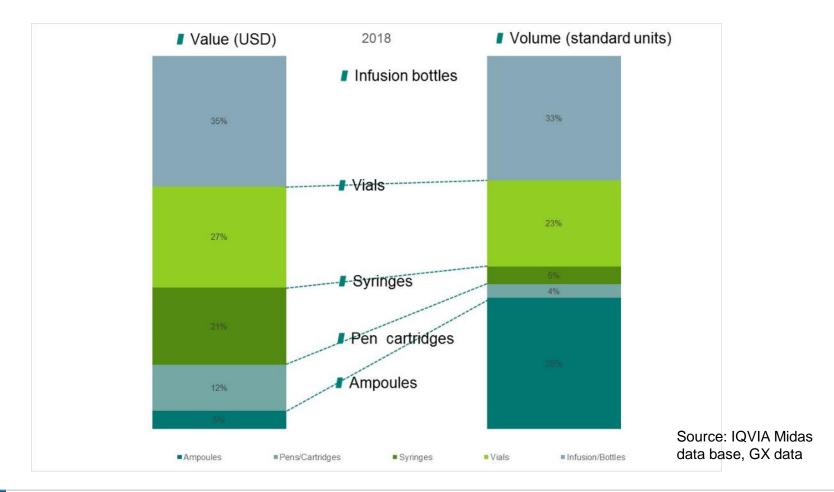
Primary containers and container closure systems Part I: Bottles, vials, ampoules, cartridges, syringes


Bernd Zeiß, Gerresheimer







## Market share







# Requirements towards Injections and Ophthalmics

FDA Guidance Container Closure Systems for Packaging Human Drugs and Biologics

- Packaging Description is part of the Registration Dossier
- Material in direct contact to the dosage form
- storage/stability transport functionality (device)

| Protection        | Compatibility         | Safety                | Performance              |
|-------------------|-----------------------|-----------------------|--------------------------|
| Temperature       | Adsorption            | Leachables            | CCI                      |
| Light             | pH change             | Extractables          | Drug Delivery            |
| Water loss        | Precipitation         | Toxicity              | NS pull off              |
| Loss of solvent   | Colour change         | Glue or ink migration | Break loose and Gliding  |
| Oxygen            | Packaging brittleness |                       | Elderly people, children |
| Microbial ingress |                       |                       | Connections              |





# Requirements Primary Packaging Containers

Consider packaging from the beginning Critical contact material Device (functions) and container at the same time

#### Physical characteristics

- Standardized by ISO
- Material
- Design, size, wall thickness...
- Breakability

#### Chemical characteristics

- USP, EP, JP tests
- L&E
- Trace metals, impurities







# Requirements Primary Packaging Containers

#### Fill and Finish compatibility

- Standardization needed
- Transparency (visual inspection)
- Sterilization

#### System functionality

- Long term storage
- Opening forces
- Delivery forces
- Stability/interactions with drug substance
- Endotoxin level
- Biocompatability
- Subvisible particles
- Closure integrity (CCI)







# Requirements Primary Packaging Containers

#### Patient /end user

- Volume
- Intended use
- Safety
- Market
- Pricing











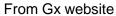
# **Available Systems**

| Container     | Advantage            | Main<br>application   | Material             | Alternative                      | Risk/<br>Disadvantage                               |
|---------------|----------------------|-----------------------|----------------------|----------------------------------|-----------------------------------------------------|
| Bottles       | Big Size             | Infusion, oral        | Glass and<br>Polymer | Bags and Pouches                 | Breakage, CCI                                       |
| Vials         | Common, size range   | Injectables           | Glass                | COP/COC,<br>other<br>polyolefins | Breakage,<br>Delamination,<br>pH shift,<br>handling |
| Ampoules      | Price, only glass    | Injectables           | Glass                | BFS                              | Particles,<br>breakage                              |
| Cartridges    | standardized         | Injectables (insulin) | Glass                | COP                              | Device needed,<br>2 closures                        |
| Syringe (PFS) | Packaging and device | Injectables           | Glass                | COP/COC                          | Silicone oil,<br>tungsten,<br>functionality         |





### **Bottles**


#### Molded Glass Type II and III

- infusion, transfusion
- oral liquids, syrup, tablets etc.
- traditional, 50-1000 ml
- Polymer (oral liquids): PE, PET
- Flexible modern infusion bags and pouches: multilayer, PVC
- Long term storage
- Break resistant, tight (CCI)
- Barrier
- Easy filling
- Easy handling at hospital
- Connectivity
- Hospital use (infusion)











From B Braun website



pda.org



### **Vials**

#### **Glass**

- Tubular Glass (glass type I, II, III; 2r -50r), ISO
- Molded Glass (glass type II, III, often >50 mL)
- Screw head, serum, Lyo (blow back)
- Amber, clear
- Bulk or Nested RTF®
- Coated, siliconized, special treatments

#### **Polymer**

- COP, Multishell®, Sizes of 2-100 ml
- Bulk or RTU

















## Ampoules

- Tubular glass Type I
- Clear or amber
- 1 30 ml
- Form B, C, D ampoules
- One point cut most frequent
- Particles at opening
- Colour rings
- Siliconization





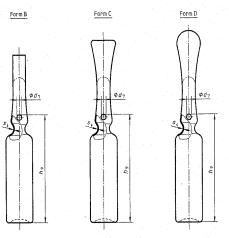


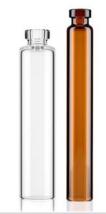

Figure 1 — Typical examples of OPC ampoules







# Cartridges


- Tubular glass type I
- 1.8 ml (dental)
- 3 ml (insulin)
- Amber, clear
- ISO standard, customized
- Bulk, RTF in dev.
- Polymer (COP) in dev.















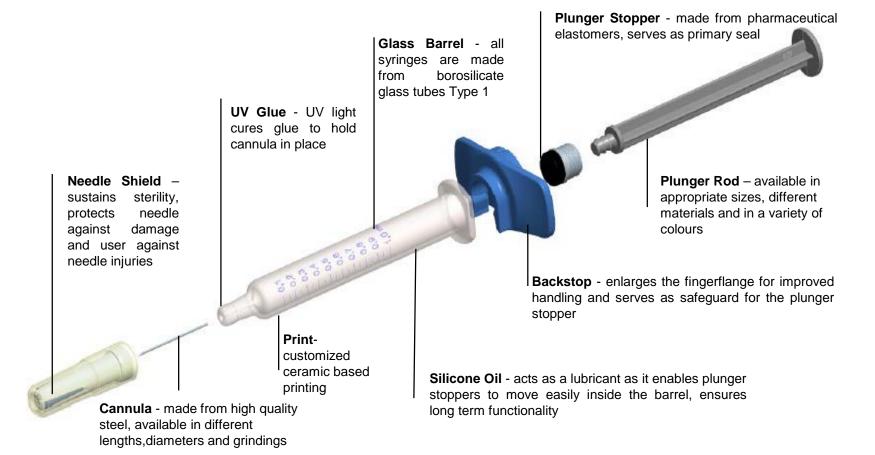


## Prefillable Syringes

#### Tubular glass Type I

- 0.5 ml 5 ml, up to 100 ml
- Luer cone, luer lock, staked-in needle
- Bulk, RTF
- Clear, (amber)
- Silicone free in dev.

#### **Polymer**


- COP and COC
- 0.5 ml 50 ml
- RTF
- Infusion pump syringes







## Prefillable Syringes





pda.org



## Market Players

#### **Glass Primary Packaging**

- Becton Dickinson
- Stevanato Group (Nuova Ompi)
- Schott
- Gerresheimer
- Nipro
- Bormioli
- SGD
- Wego
- Stölzle
- ...

#### Tubing

- Schott
- Nipro
- Corning
- NEC

#### **COP/COC** containers

- Daikyo
- West
- Taisei Kako
- Gerresheimer
- Terumo
- SiO<sub>2</sub>
- Schott
- ...
- COP: Zeon
- COC: Topas
- Other polmers: diverse





### References

#### Relevant norms and regulations

- ISO 11040-4: Glass syringes ready for filling
- ISO 11040-5: Plunger stoppers
- ISO 11040-6: Plastic syringes ready for filling
- ISO 11040-7: Nest & tub
- ((ISO 11040-8: test methods for finished prefilled syringes))
- ISO 13926-1: Pen cartridges
- ISO 9187-1 and 2: Ampoules
- ISO 8362-1: Vials from tubular glass
- ISO 8362 and 8536 Infusion and Injection Bottles
- ISO 9001: Quality management
- ISO 15378: GMP Primary packaging
- Ph. Eur. 2.6.14 Bacterial Endotoxins, USP <85> Bacterial Endotoxins Test
- Defect Evaluation Lists Glass, Defect Evaluation Lists Plastic
- Ph. Eur. 3.2.1 Glass Containers for Pharmaceutical Use
- USP <660> Chemical Resistance Glass Containers; USP <1660> Delamination
- JP 7.01 Test for Glass Containers for Injection
- 4802-2 Hydrolytic Resistance, Container Class HC1
- ISO 80369-7 Small-bore connectors for liquids and gases in healthcare applications (former 594-1 and 2)







### More References

- 21 CFR 211, Subpart E "Current Good Manufacturing Practice for Finished Pharmaceuticals"
- 21 CFR 820 "Quality System Regulation Medical Devices"
- ISO 13485 "Medical Devices Quality Management Systems"
- ISO 15378 cGMP for Primary packaging Materials
- Ph. Eur. 2.6.1 Sterility, USP <71> Sterility Tests
- ISO 10993-7 Ethylene Oxide Sterilization Residuals DIN EN ISO 11135 Bacterial
- Ph. Eur. 2.4.20 Arsenic, USP <211> Arsenic
- Cannula: ISO 9626 "Stainless steel needle tubing medical dev"
- Rubber: Ph. Eur. 3.2.9 "Rubber Closures for Containers"
- USP <381> "Elastomeric closures for injections"
- ISO 8871 "Elastomeric parts for aqueous par. prep.
- USP <87> or equivalent, USP <88> : Biological Reactivity Tests
- Lubricant: Conformity to applicable Monographs of EP and USP,
- Adhesive: USP <88> "Biological Reactivity Tests, in Vivo"
- BSE/TSE
- Toxic Packaging legislation EC-directives 94/62/EC, 2004/12/EC
- 2005/20/EC directive on packaging and packaging waste
- CONEG Toxic Packaging legislation







Thank you!

Bernd Zeiß, Head of Technical Support Gerresheimer Bünde GmbH



