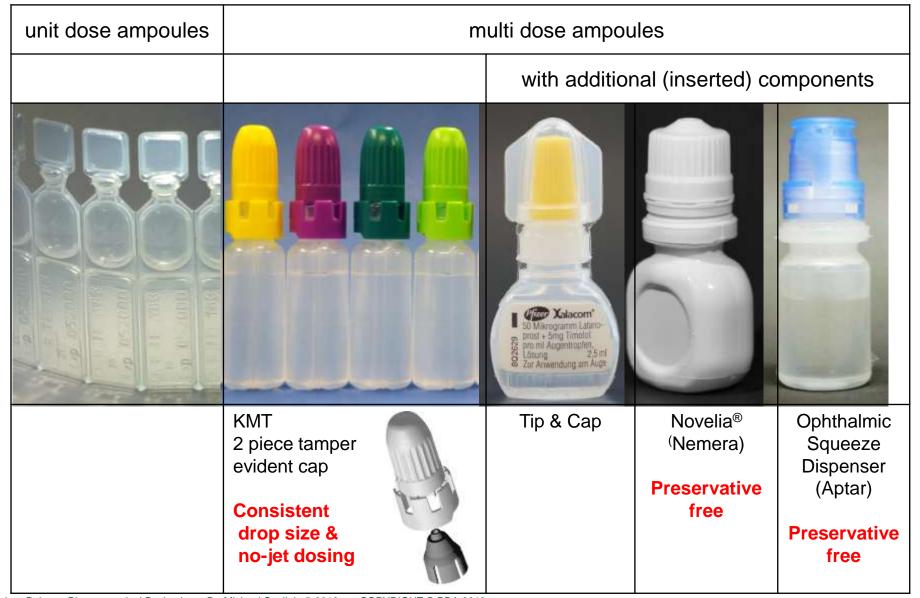


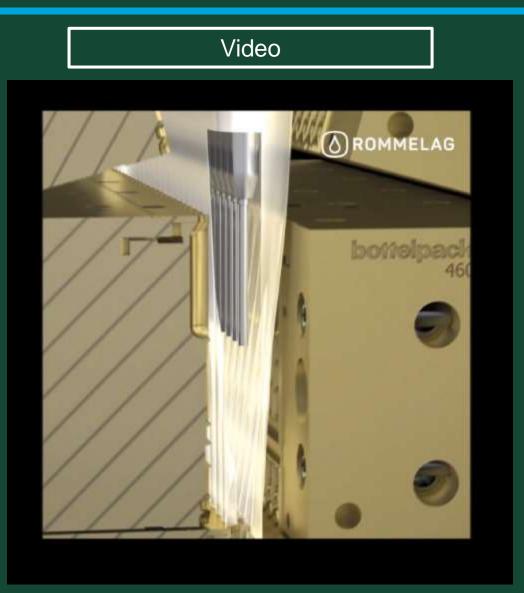
Dosage forms, designs and usability of BFS containers

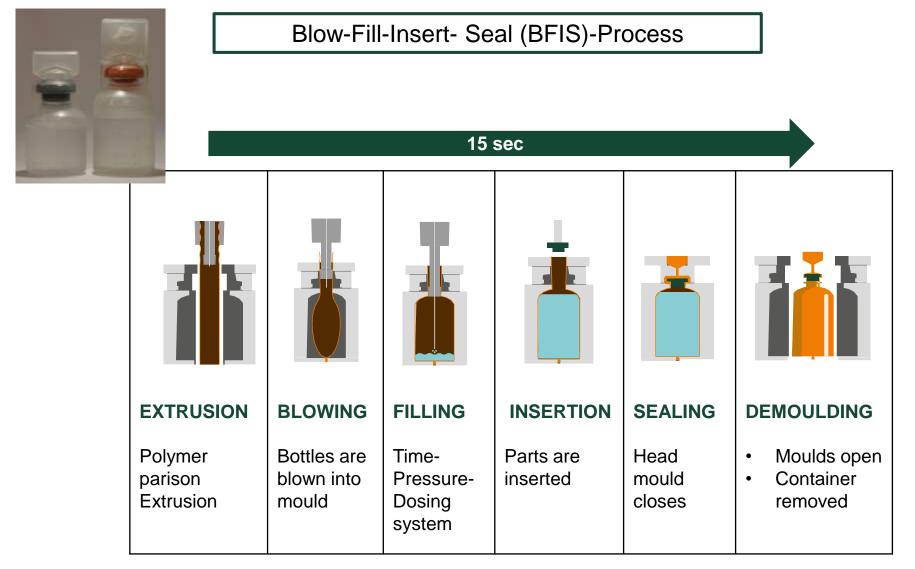
- Ophthalmics
- Inhalation
- Parenterals / Terminal sterilization


User acceptance and usability

Optimized application of infusions / Easy empty containers

Modern Polymer Pharmaceutical Packaging Dr. Michael Spallek 5-2019 COPYRIGHT © PDA 2019



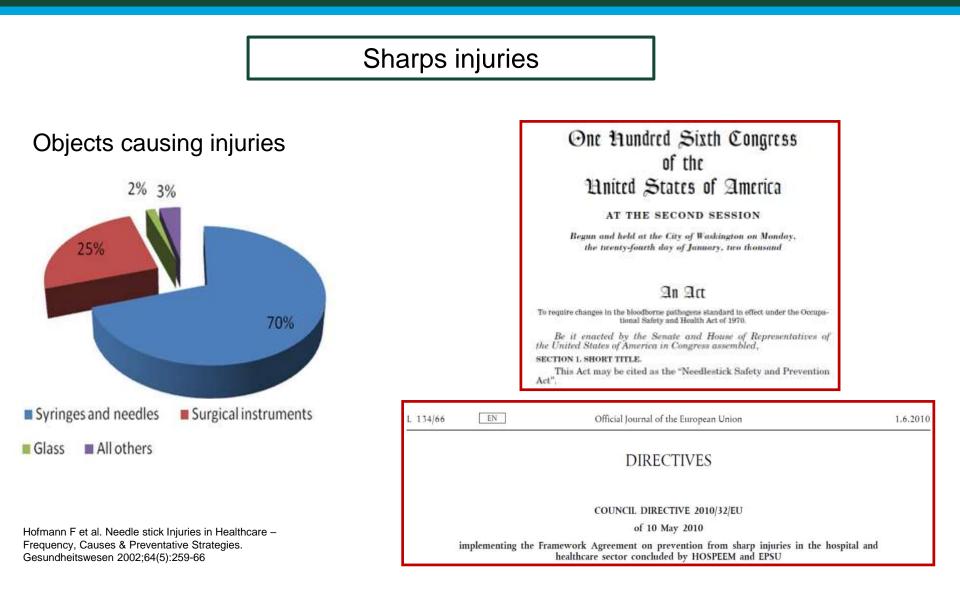

3 seconds and five BFS-process steps from polyolefine granulates to closed containers: Inner details.

/1/ R. Oschmann, and O.E. Schubert, Eds, Blow-Fill-Seal Technology, (CRC Press, Stuttgart, 1999).

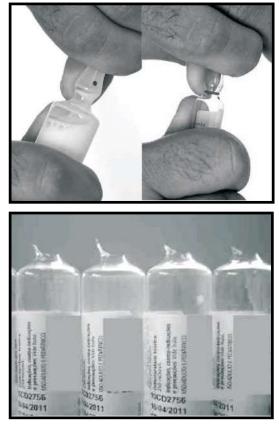
/2/ The manufacture of sterile Pharmaceutical Products Using Blow-Fill-Seal-Technology Parenteral Drug Association technical report No 77, 2017

Video

Blow-fill seal (BFS) Containers allow a wide range of applications & designs.



Examples of BFS containers



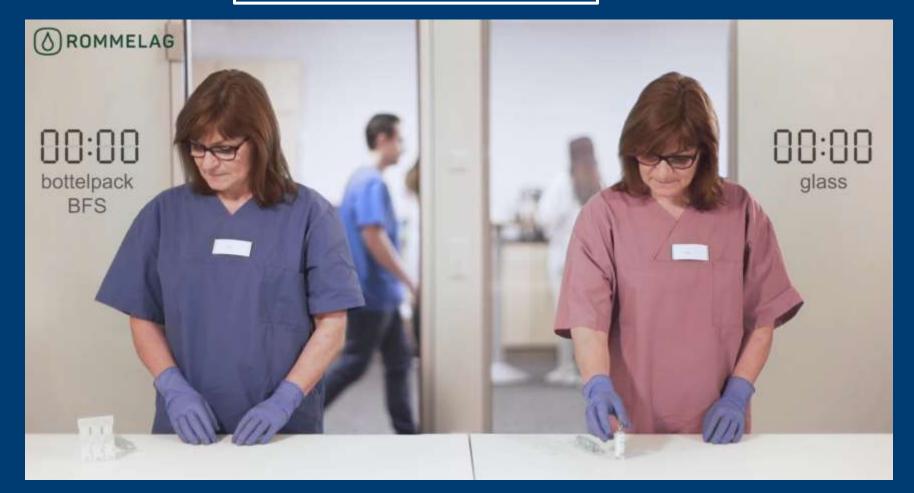
Ampoule handling

Antônio Roberto Carraretto, Erick Freitas Curi et al. Glass Ampoules: Risks and Benefits Rev Bras Anestesiol 2011; 61: 4: 513-521

Some key-targets

- 1. Easy twist-off opening
- 2. Safe fit to syringe designs worldwide
- 3. Intuitive connecting
- 4. Good tightness at Luer-Cone
- 5. Easy transfer into syringe
- 6. ISO 594 / ISO 80369-7 compliant
- 7. Suited for PP & LDPE
- 8. Including sterilization & aging effects

Michael W. Spallek, Johannes W. Geser Usability of Glass versus Polymer Ampoules: A Comparison PDA Parenteral Packaging, Rome, 2-2018



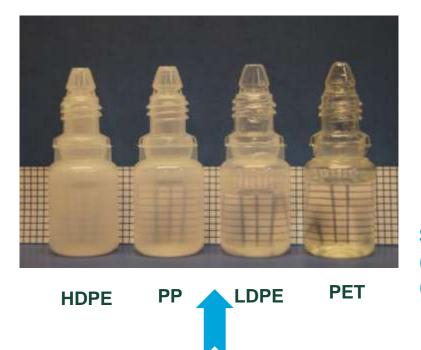
Video

The BFS-process allows to produce a large variety of bottle designs for Large Volume Parenterals (LVP).

Literature

Pharmaceutical Development and Technology, 2010; 15(1): 6-34

Review of sterile packaging systems 23


	PVC	LDPE	HDPE	PP	EVA
Property	(Polyvinyl chloride)	(Low density polyethylene)	(High density polyethylene)	(Polypropylene)	(Ethylene vinyl acetate)
Compatibility with contained drug produc	Poor ts	Good	Good	Good	Fair
Moisture permeation	Very poor	Good	Excellent	Good	Very poor
Heat sterilization	Fair	Poor	Good	Excellent	Very poor
Transparency characteristics	Good	Fair	Poor	Fair	Fair
Collapsibility	Excellent	Poor	Poor	Poor	Good
characteristics					
Disposability	Poor	Good	Good	Good	Fair

Research and Development, Baxter BioPharma Solutions, Bloomington, Indiana, USA

Typical BFS materials

LDPE, HDPE & PP

from e.g. LyondellBasell (Purell®), Borealis (Bormed®), etc.

Autoclavable PE 106-115°C; PP 121°C

Extractables dossiers (approx. 40 pages) available for selected PE & PPs (by Toxikon)

Soft PPs new developments by Borealis (SB815MO)* & Sumitomo with low flex modulus (400-500 MPa) and modern additive packages

Martina Sandholzer, Joanne Belshaw: Development of a EP and USP compliant soft polypropylene for blow-fill-seal applications PDA Parenteral Packaging Conference Venice April 13th, 2016

Michael W. Spallek et al.: Characterization of Multilayer Blow-Fill-Seal Containers for Pharmaceutical Packaging, PDA Parenteral Packaging, Bad Soden, March 5th, 2015 Isabelle Trocherie Advancing flexibility, softness and transparency with Polybutene-1 for parenteral applications PDA Parenteral Packaging, Rome, 2-2018

Soft PP

EasyEmpty - key development targets

- 1. Unvented administration (closed system)
- 2. Easy empty, i.e. max. fill-ratio (fill volume / total volume)
- 3. Minimal air head space, i.e. minimal height / weight
- 4. Self standing BFS infusion bottle
- 5. Standard head design
- 6. Suited for PP (i.e. autoclaving 121°C, 20 min)
- 7. Benchmark: BBraun 500 ml LDPE 3220D

NaCl 0.9 %, batch: 153618141, exp.: 7-2018

Medical experience favor unvented application of infusions over open infusion.

Trend: closed system, i.e. unvented application /1-2/

Tradition: open infusion

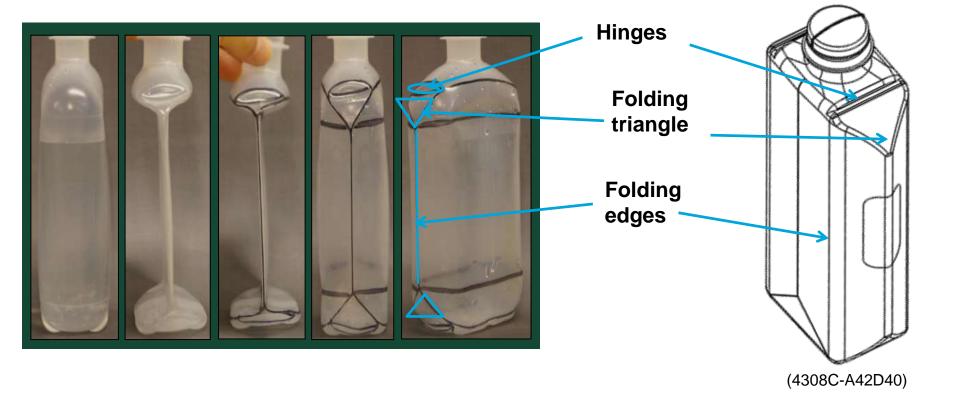


Figure 1 Open Infusion Container - Glass container with air filter.

/1/ Maki DG, Rosenthal VD, Salomao R, Impact of switching from an open to a closed infusion system on rates of central line-associated bloodstream infection: a meta-analysis of time-sequence cohort studies in 4 countries. Infect Control Hosp Epidemiol 2011;32:50–8

/2/ Graves N, Barnett AG, Rosenthal VD. Open versus closed IV infusion systems: a state based model to predict risk of catheter associated blood stream infections. *BMJ Open* 2011;**1**:e000188

ROMMELAG

Christoph Kaschta Modelling the discharge behavior of blow-fill-seal infusion bottles by finite element analysis and experimental verification. PDA Parenteral Packaging, Barcelona/Spain, 14-15 March 20

FEM Simulation has been applied to support fast design development.

Example EE 100ml version 1

Approach:

- X-Ray-CT-Scanning EE100v1 for real wall thicknesses
- 2. FEM modelling based on scan
- Verification of simulation results by experiments
- Simulation of different critical design attributes
- Verification of best simulation results by experiments

Christoph Kaschta et al.(accepted for presentation)

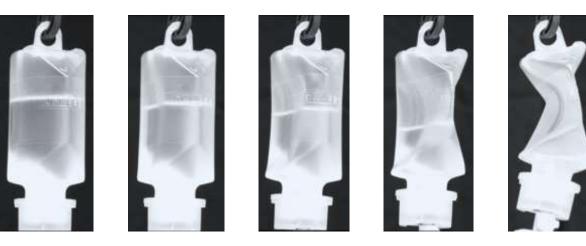
Modelling the emptying behavior of blow-fill-seal infusion bottles by finite element method and experimental verification, PDA Parenteral Packaging Conference 3-2016, Barcelona

FEM simulation and lab results fit together well.

t_{end}

FEM Simulation

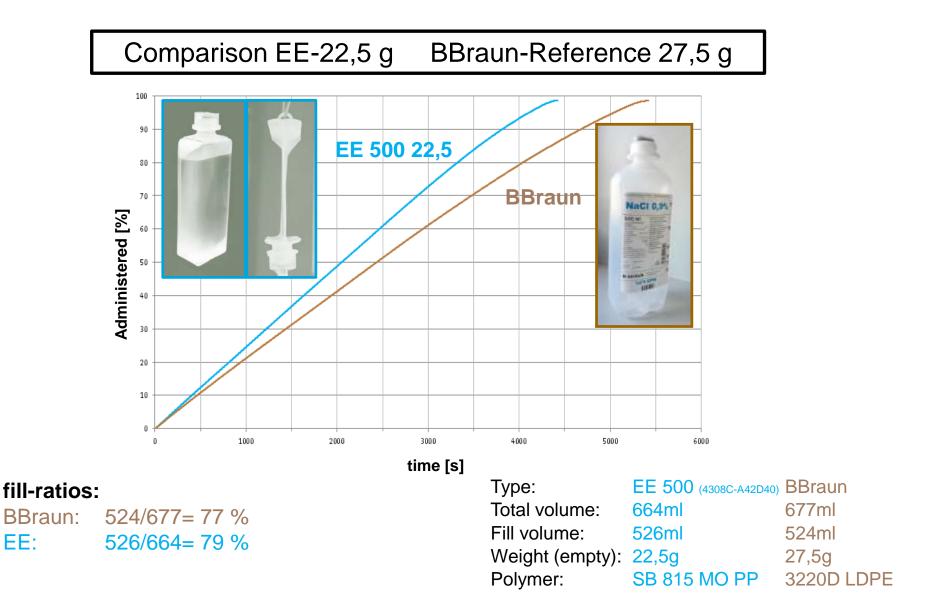
LS-Dyna


Input: Young's modulus 425 MPa CT wall thickness distribution Smoothened edges

Lab experiment

Lab conditions:

Temp.: $22 \pm 2^{\circ}$ C Needle: 23G / 0,6 x 30 mm Demin. Water H_{eff} 775 mm



Discharge time

Christoph Kaschta Modelling the discharge behavior of blow-fill-seal infusion bottles by finite element analysis and experimental verification. PDA Parenteral Packaging, Barcelona/Spain, 14-15 March 20

 t_0

ROMMELAG

Modern Polymer Pharmaceutical Packaging Dr. Michael Spallek 5-2019 COPYRIGHT © PDA 2019

FEM simulation was a valuable tool for the development of innovative infusion bottles.

Key- Results					
	Established LD-PE-bottle	Established PP-bottle	New bottle		
Safety	+	+	+		
Particulate matter	÷	+	+		
Extractables	+	0	+		
Sterilization temperature	113°C	121°C	121°C		
Sterilization time	≥ 75 min	≥ 20 min	≥ 20 min		
Young´s modulus	Low (300 MPa)	High (950 MPa)	Low (425 MPa)*		
Container size	Minimal headspace	Increased headspace	Minimal headspace		
Discharge behavior	Good	Good, if…	Good		

* Martina Sandholzer, Joanne Belshaw Development of a EP and USP compliant soft polypropylene for blow-fill-seal applications PDA Parenteral Packaging Conference Venice April 13th, 2016