pda.org

Best Practices for Glass Primary Containers; 09-Oct-2019; Mainz, Germany

Strength and reliability of glass containers used in the pharmaceutical industry

Dr. Florian Maurer, Senior Scientist Strength/Fractography/Reliability & Lifetime, SCHOTT AG

Outline

- Glass Breakage Fundamentals
- Assessment of flaws
- Fractography Fundamentals

Glass Breakage – Fundamentals

"Crackademy"

COPYRIGHT © PDA 2018

pda.org

Glass breakage

• Or – what does glass have in common with an elephant?

Root cause for glass breakage

- Simultaneous presence of
 - Flaw (critical in terms of mechanical strength)
 - Mechanical load (tensile stress) at flaw
- Interaction of critical flaw and mechanical load ("stress intensity") reaches critical value
 - "Breakage resistance"

Different cases

- No breakage if no or only one factor is present
- Flaw and mechanical load occur simultaneously
 - Impact
- Flaw is created prior mechanical load
 - Depyrogenization/heat sterilization
 - Lyophilization/freeze drying
 - Auto-injector
- Flaw is introduced while mechanical load is already present
 - Residual stresses
 - Constant internal pressure

pda.org

6

Definition of "flaw"

- Any type of discontinuity within the isotropic, monolithic structure of the glass (including the surface) can act as flaw
 - Foreign material
 - Voids
 - Surface irregularities
- Discontinuities act as concentrators for mechanical stresses
- Also variations in geometry
- Size (dimension) and shape (geometry) of discontinuity affect criticality
 - Large flaws can exhibit low criticality
 - Small flaws can exhibit high criticality

Any type of discontinuity within the isotropic monolithic structure of a glass (including the surface) can act as flaw and become critical in terms of strength

Criticality affected by size and shape

Intensification of stresses

- Discontinuities act as concentrators for mechanical stresses
- Example: Bar of chocolate
 - Notches act as stress concentrators ("surface flaws")
 - Contribution of notches to stress intensity factor ≈2 higher than for plane bar
 - Lower tensile loads (≈1/2) for breakage required

	surface flaw	×	tensile load	\geq	breakage resistance
plane	1	×	12	\geq	12
notched	2	×	?	\geq	12

- Definition of strength: Mechanical resistance against breakage
 - Value/magnitude of mechanical load at which breakage occurs

- Definition of strength: Mechanical resistance against breakage
 - Value/magnitude of mechanical load at which breakage occurs

Glass breakage: Stress intensity ≥ breakage resistance

Strength depends on combination of flaw and load contribution

The strength of glass is *not* a material constant

The strength of glass is a projection of its surface quality

Surface quality defined by flaw size (distribution)

- Flaw size distribution \rightarrow strength distribution
 - Large flaws \rightarrow low strength
 - Small flaws \rightarrow high strength

- The surface quality of glass is defined by the
 - Type(s)
 - Criticality (shape)
 - Size distribution(s)
 - Number/amount
 - of surface flaws
- Every glass surface contains flaws
- A perfect glass surface without any flaws does not exist

Consequence: Flaws limit the strength of a glass solid

Reduction of strength

Increase in flaw size (depth) reduces strength

Multiple flaw populations

• The distribution of the most critical defects dominate the overall strength

Multiple flaw populations (example)

- Reference sample: after process step
- Damaging during process step
- Burst-pressure strength experiments
- Fractographic examinations
- Location of fracture origin

Most important requirement for smart/gentle strength improvement: Identification of most critical flaws

Multiple flaw populations (example)

- Systematic strength improvement
 - Identification and quantification of most critical flaw
- Stepwise elimination of damage mechanisms
 - Stepwise improvement of strength distribution

A systematic elimination of defect mechanisms approaches recovery of initial strength distribution

Glass breakage

- So what does glass have in common with an elephant?
- Both do not forget and do not forgive any mistreatment!

Overall summary: Treat your glass (and your elephants) right!

Assessment of flaws

COPYRIGHT © PDA 2018

pda.org

Assessment of flaws (in terms of breakage criticality)

- Different publishers
 - PDA Technical Report #43 [pda43]
 - Editio Cantor Verlag [harl16]
 - Container vendors [pt07]
 - Company-internal
- Defect catalogues
 - In general: No distinction between cosmetic and strength-affecting flaws
 - Characterization and assessment of flaws only by (lateral) dimensions
- Required information for assessment of criticality
 - Flaw shape/geometry, container shape/geometry \rightarrow (three-dimensional) geometry information
 - Flaw dimension → flaw size ("depth")

Assessment of flaws (in terms of breakage criticality)

- Are optical techniques capable to acquire information about (three-dimensional) flaw geometry and depth?
 - Manual (human eye)?
 - Automated (camera/software)?

Optical inspection systems are inappropriate for an assessment of criticality

 Reliable assessment of strength-related flaws only possible via appropriate strength experiments

Only strength experiments are capable to acquire reliable information about criticality of flaws

Cosmetic versus critical flaws (example)

- Batch of glass vials rejected due to cosmetic flaws
- Accepted reference batch (no cosmetic flaws)
- Burst-pressure strength experiments
- Fractographic examinations (location of fracture origin)

Visual appearance of flaws does not necessarily give a hint about the criticality

Size versus criticality of flaws (example)

- Two types (formats) of glass syringes
- Classification of flaws by (lateral) size
- Burst-pressure strength experiments
- Fractographic examinations (location of fracture origin)

Optical assessment does not yield a reliable information about flaw criticality

pda.org

Common fracture origins: Blunt contact damages

- "Bump check", "scuff", "percussion cone"
- Static or dynamic contact with blunt object
- Crack pattern: Hertzian cone crack [lawn93]
 - Not necessarily fully developed
 - After breakage, fracture origin often forms a curved edge

Common fracture origins: Blunt contact damages

CONNECTING PEOPLE SCIENCE REGULATION

COPYRIGHT © PDA 2018

pda.org

Blunt contact damages (examples)

Blunt contact damages (examples)

Common fracture origins: Craquelure

pda.org

Common fracture origins: Craquelure

- Cracks induced due by layer of different coefficient of thermal expansion
 - Differences in chemical composition
 - Local condensation or evaporation of volatile components
- Development of filigree crack system ("spider web")
- Cracks not penetrating deeply into bulk glass: Shallow, cloddy fragments

Fractography – Fundamentals

"Tracking The Cracking"

COPYRIGHT © PDA 2018

pda.org

Definition of fractography

- ASTM C 1145: "Means and methods for characterizing a fractured specimen or component" [astm1145]
- Macroscopic fractography: Examination and interpretation of crack patterns
- Failure-inducing mechanical tensile load
- Microscopic fractography: Examination of fracture-exposed surfaces and the interpretation of the fracture markings
- Failure-inducing flaw
- Art or science to conclude the failure of brittle materials from fracture surfaces and patterns

Fractography enables an objective assessment of the circumstances of failure of a solid

Definition of fractography

Fractography can answer many questions

- Position of failure-inducing flaw?
- Type of failure-inducing flaw?
- Direction of failure-inducing mechanical load?
- Type of failure-inducing mechanical load?
- Container closure-integrity affected?
- Velocity of failure propagation?
- (Magnitude of failure-inducing mechanical load?)
- (Static or dynamic failure?)
- (One-step or multiple step failure?)
- (Presence of corrosive medium?)

Initiation of failure (fracture)

- Application of mechanical load causes deformation (elastic strain)
- Elastic strain stores volume energy
- Impetus for failure: Release of stored volume energy
 - Release of energy by creation of surfaces (\rightarrow fracture surfaces)

Impetus for brittle failure: Release of stored elastic energy (creation of surfaces)

Propagation perpendicular to (local) principle tension

Crack propagation direction *always* perpendicular to local principle tension

- Acceleration from v = 0 m/s up to maximum velocity (≈ km/s)
- Further release of energy by creation of additional surfaces \rightarrow branching

Crack branching starts at maximum propagation velocity

Fracture patterns (macroscopic fractography)

- Shape/orientation of cracks gives hints about direction of mechanical load
- Deduction of load situation
 - Constant or inhomogeneous
 - Bending
 - Side compression
 - Thermal gradients
 - Inner pressure
- Branching
 - Backtracking to first branching → vicinity of fracture origin
 - Maximum crack propagation velocity reached

Macroscopic fractography is capable to characterize the failure-inducing mechanical load

Fracture patterns (macroscopic fractography)

Fracture surface markings (microscopic fractography)

- Topographic features generated during crack propagation
 - Fracture mirror
 - Mist/velocity/twist/wake/eyelash hackle
 - Wallner lines, gull wings
 - Tilt/arrest line, dwell mark
 - Chipping
 - Scarps
- Observation gives hints about propagation conditions
 - Failure propagation velocity
 - Failure propagation direction
 - Change of direction and/or magnitude of mechanical load
 - Split crack front
 - = ...

Microscopic fractography is capable to determine the fracture origin position

Fracture surface markings (microscopic fractography)

COPYRIGHT © PDA 2018

pda.org

Quantitative fractography

- Determination/estimation of strength σ from fracture surface markings
- (Semi-)empirical law: $A=\sigma \sqrt{r}$
- A: Material constant
- $\sigma: Strength$ r: Radius $\sigma = \frac{A}{\sqrt{r}}$ $\sigma = \frac{A}{\sqrt{r}}$ r: Radius r: R

Summary

- The strength of glass is not a material constant
- The strength of glass is a projection of the surface quality
- Defined by flaw type and size distribution(s)
- The strength of glass can be described by statistical distributions
- The creation of new, more critical flaws during processing will reduce the overall strength
- Critical, strength-affecting flaws may differ from cosmetic flaws
- Visual inspection systems do not identify strength-affecting flaws
- Risk of wrong decisions (acceptance/rejection)
- Reliable assessment only possible from appropriate strength experiments
- The most critical flaw (fracture origin) can be determined by fractography
- Application: Process optimization (reduction of damage mechanisms) [hain16,hain16a]
- Quantitative fractography enables an estimation of the strength

References (1)

[astm1145]ASTM C 1145-06; "Standard Terminology of Advanced Ceramics".

- [hain16] Haines, D. et al.: "Why do Pharmaceutical Glass Containers Break: The Underestimated Power of Strength Testing and Fractography"; International Pharmaceutical Industry 8/1 (2016) 88.
- [hain16a] Haines, D. et al.: "Die Anwendung von Festigkeitsprüfungen und Fraktografie auf pharmazeutische Glasbehälter"; Pharm. Ind. 78/8 (2016) 1208.
- [harl16] Harl, M.; Horst, S.; "Fehlerbewertungsliste für Behältnisse aus Röhrenglas"; Editio Cantor Verlag (2016).
- [icg09] International Commission on Glass; "Strength of Glass Basics and Test Procedures"; ICG Advanced Course (2009).
- [lawn93] Lawn, B.; "Fracture of Brittle Solids Second Edition"; Cambridge University Press (1993).
- [moul67] Mould, R.E.; "The Strength of Inorganic Glasses"; Fundamental Phenomena in the Materials Sciences (1967) 119.

References (2)

- [pda43] Parenteral Drug Association; "Identification and Classification of Nonconformities in Molded and Tubular Glass Containers for Pharmaceutical Manufacturing: Covering Ampoules, Bottles, Cartridges, Syringes and Vials "; Technical Report #43 (2013).
- [pt07] SCHOTT Rohrglas GmbH; "Aus Fehlern lernen Glasfehler sichtbar gemacht" (2007).
- [quin16a] Quinn, G.D.: "Fractography of Ceramics and Glasses"; NIST Special Publication 960-16e2 (2016).

pda.org

Thank you for your attention!

