pda.org

Helium Mass Spectrometry for CCIT

Brian Mulhall, CEO Leak Detection Associates

Overview

- Introduction to Helium Leak Testing
 - -Why helium?
 - -Principles of operation
- Helium Leak Testing Methods
 - -Sniffer Mode
 - Approach
 - -Vacuum Mode
 - Approach
 - Case Studies

Introduction

Principles of operation and test methods

COPYRIGHT © PDA 2018

pda.org

Why Helium?

- Extremely small molecule
- Noble gas
 - Non-toxic
 - Chemically inert
 - Non-flammable
- Atmospherically rare
 - ~5ppm
 - Selectable

Helium

© Encyclopædia Britannica, Inc.

To Convert to Leakage Rate of:	Multiply Helium Leakage Rate by:		
	Laminar Flow	Molecular Flow	
Argon	0.88	0.316	
Air	1.08	0.374	
Nitrogen	1.12	0.374	
Water vapor	2.09	0.469	
Hydrogen	2.23	1.410	

COPYRIGHT © PDA 2018

pda.org

Helium Leak Detection Principle of Operation

- Helium is present inside a closed system (container)
 - Numerous approaches to sample prep
- Helium escapes
- Collected by vacuum source
 - Sniffer probe or instrument inlet port
- Gases passed through spectrometer analyzer cell and quantified

COPYRIGHT © PDA 2018

pda.org

5

Helium Mass Spectrometry Analyzer Cell Basics

- Gas molecules flow into an ionization chamber
- Tungsten filament electron beam ionizes molecules
- Ions travel according to an electrical field, and magnetic field causes deflection relative to mass/charge
- The analyzer cell is tuned for the mass/charge of helium
- Stream of ions hitting the target is reported as leak rate

COPYRIGHT © PDA 2018

pda.org

6

Helium Leak Detection Methods

- Numerous options
 - Sniffer mode
 - Vacuum mode
 - Fill pre-sealing
 - Fill post-sealing
 - Continuous Flush
- In our industry, typically run according to ASTM F2391 (05)

COPYRIGHT © PDA 2018

pda.org

Helium Leak Detection in the Sniffer Mode

Procedure, advantages, limitations.

COPYRIGHT © PDA 2018

pda.org

8

Helium Leak Detection Procedure A - Sniffer

- Sample Prep
 - Fill prior to sealing
 - Puncture to fill
- Sniffer probe, connected to HeLD, vacuum pulled on the tip
- Place tip near area of interest
- Scan area of interest at ~1/8in (3mm) per second
- Results recorded real-time
- Increase in observed HeLR indicative of leakage

COPYRIGHT © PDA 2018

pda.org

Helium Leak Detection Procedure A - Sniffer

- Advantages
 - Location-specific leak testing
 - Test packages not conducive to fixturing / chambering
- Limitations
 - Considered probabilistic
 - Semi-quantitative
 - Leakage reported, but typically qualitatively interpreted

COPYRIGHT © PDA 2018

pda.org

Helium Leak Detection in the Vacuum Mode

Procedure, advantages, limitations, and case studies.

COPYRIGHT © PDA 2018

pda.org

11

Helium Leak Detection Procedure B – Vacuum Mode

- Sample Prep
 - Fill prior to sealing
 - Fill post-sealing
 - Continuous Fill
- Test Sequence:
 - Filled sample placed in chamber
 - Vacuum pulled, leak rate obtained
 - Helium concentration measured, result corrected

Stopper

Crimp

LDA SIMS 1915+ Vial

Module (HSAM)

COPYRIGHT © PDA 2018

Helium Leak Detection Procedure B – Vacuum Mode

- Sample Prep
 - Fill prior to sealing
 - Fill post-sealing
 - Continuous Fill
- Test Sequence:
 - Filled sample placed in chamber
 - Vacuum pulled, leak rate obtained
 - Helium concentration measured, result corrected

LDA Vial Filler

LDA SIMS 1915+

COPYRIGHT © PDA 2018

pda.org

Helium Leak Detection Procedure B – Vacuum Mode

- Sample Prep
 - Fill prior to sealing
 - Fill post-sealing
 - Continuous Fill
- Test Sequence:
 - Sample fixtured in place
 - Vacuum pulled
 - Baseline taken, 100% helium introduced
 - Helium leak rate recorded without adjustment

Sample

100% Helium Fill

COPYRIGHT © PDA 2018

Case #1 – Vial Capping Optimization

In support of package development & package integrity profile.

COPYRIGHT © PDA 2018

pda.org

Capping Optimization

- Lifecycle approach to CCI
 - Contributes to package integrity profile
- Package / Process Development
 - Aid in component selection
 - Establish dimensional specifications
 - Establish manufacturing requirements
 - Demonstrate inherent integrity to MALL
 - Inform in-process seal quality tests

Vial Capping

RSF

pda.org

Capping Optimization

- Incorporates
 - Dimensional Variation
 - Capping Settings
 - Compression Analysis
 - Residual Seal Force (RSF)
 - Leak Detection (HeLD)
- Yields:
 - Quantitative data
 - Correlation between capping, compression, RSF, and leakage
 - Provides feedback or confirmation of the assembly process

Example Capping Study Samples

Group #	Vial – Stopper – Seal Combo		
	Sample IDs	Capping Force	
1	A1 - A30	Very Low	
2	A31 - A60	Low	
3	A61 - A90	Nominal	
4	A91 - A120	High	
5	A121 - A150	Very High	

RSF

The compression curve (red) is a combination of the viscous and elastic responses to the stress from tester load. "The knee"(yellow) is where additional deformation occurs. An algorithm is applied, using the 1st (blue) and 2nd (green) derivatives to accurately identify that knee.

Ludwig J, Nolan P, Davis C, Automated method for determining Instron residual seal force of glass vial/rubber stopper closure systems, *PDA J Pharm Sci & Technol* 47, (1993) 211 – 218

Photo credit: Roger Asselta, Genesis Packaging Technologies

CONNECTING PEOPLE SCIENCE AND REGULATION*

COPYRIGHT © PDA 2018

- Can be thought of as an indirect measure of stopper force on a vial
- Influenced by stopper compression
 - Is an offline test, can be performed "anywhere"
 - Can be correlated to leakage, enabling
 - o In process capping check
 - Capping setting check for additional or changed sealing lines
 - Enables basis of comparison for a given package system

18

2020 PDA Container Closure Integrity Workshop

pda.org

RSF to Leakage

RSF can now be checked during manufacturing

COPYRIGHT © PDA 2018

pda.org

Case #2 – Cartridge Package Development

Component selection, dimensional specifications, and processing.

COPYRIGHT © PDA 2018

pda.org

20

Introduction: Background

- In 2015, collaboration began on a new plunger for a parenteral cartridge package system with respect to CCIT
 - Goal: Improve technical properties and leachable profile of plunger thus expanding usability in future parenteral formulations/applications
- After selecting dimensions and elastomer formulation, one variable remained:
 - Smooth plunger surface vs roughened plunger surface

Connecting People, Science and Regulation®

M. Rasmussen, B. Zurawlow. The Effect of a Plunger Surface Roughening Treatment on CCI, PDA Europe Parenteral Packaging Conference, Barcelona, Spain, 15 March 2017

COPYRIGHT © PDA 2018

pda.org

4

Introduction: Smooth vs Rough Plunger Surface

- Benefits offered by a roughened plunger surface:
 - 1. Increased aesthetic appeal vs smooth plunger
 - Perceived "softness" of the design
 - 2. Reduced plunger-to-plunger "stickiness"
 - Reduces instances of plungers stuck in hoppers
 - · Decreases line shutdowns, increases production rate

Figure 1. Smooth (left) vs. Rough (right) Plunger Surface Note: Photo taken under video microscope, 23x

Connecting People, Science and Regulation®

M. Rasmussen, B. Zurawlow. The Effect of a Plunger Surface Roughening Treatment on CCI, PDA Europe Parenteral Packaging Conference, Barcelona, Spain, 15 March 2017

COPYRIGHT © PDA 2018

pda.org

5

22

Method: Modified Approach

Figure 3. Example of Test Setup

- For each sample, the following procedure was followed:
 - 1. Pull vacuum (1 atm differential)
 - 2. Take baseline reading
 - 3. Flood cartridge with 100% Helium
 - 4. Take final Helium Leak Rate (HeLR) 30 seconds post-introduction

9

Connecting People, Science and Regulation®

M. Rasmussen, B. Zurawlow. The Effect of a Plunger Surface Roughening Treatment on CCI, PDA Europe Parenteral Packaging Conference, Barcelona, Spain, 15 March 2017

COPYRIGHT © PDA 2018

pda.org

Results: Post-Treatment Sample Sets

Connecting People, Science and Regulation®

M. Rasmussen, B. Zurawlow. The Effect of a Plunger Surface Roughening Treatment on CCI, PDA Europe Parenteral Packaging Conference, Barcelona, Spain, 15 March 2017

COPYRIGHT © PDA 2018

pda.org

Method: Sample Sets

Ribs to Be Tested		
Fully Intact (All Ribs)		
Top Rib Only		
Top and Middle Rib		
Middle Rib Only		
Middle and Bottom Rib		
BottomRib Only		

Figure 4. Sample Configurations

Figure 5. Example of Middle and Bottom Rib Test Sample

- Desire to assess rib by rib
 - Adjacent configurations were evaluated
 - 120µm acupuncture needles were used to isolate ribs
 - Limited smooth samples available
- Relevance:
 - Define sterile barrier
 - Risk of liquid between ribs
 - Risk of plunger movement

12

Connecting People, Science and Regulation®

M. Rasmussen, B. Zurawlow. The Effect of a Plunger Surface Roughening Treatment on CCI, PDA Europe Parenteral Packaging Conference, Barcelona, Spain, 15 March 2017

COPYRIGHT © PDA 2018

pda.org

25

Plunger Movement Sterile Sterile The integrity of these two seals Sterile create a "sterile window". Nonsterile

Thus, plunger movement within this "window" is at low risk for microbial contamination.

COPYRIGHT © PDA 2018

pda.org

Results: Summary

Rib Configuration	<u>Surface</u> <u>Type</u>	<u>Average HeLR</u> (mbar*l/s)	<u>Minimum HeLR</u> (mbar*l/s)	<u>Maximum HeLR</u> (mbar*l/s)
All	Rough	1.9×10^{-9}	4.8 × 10 ⁻¹⁰	1.2× 10 ⁻⁸
Тор	Smooth	2.2 × 10 ⁻⁹	3.6 × 10 ⁻¹⁰	3.6 × 10 ⁻⁹
	Rough	8.1 × 10 ⁻⁹	2.7 × 10 ⁻¹⁰	2.0× 10 ⁻⁷
Top and Middle	Smooth	5.6 × 10 ⁻¹⁰	3.6 × 10 ⁻¹⁰	1.3 × 10 ⁻⁹
	Rough	2.3× 10 ⁻⁶	1.5 × 10 ⁻¹⁰	1.9× 10 ⁻⁴
Middle	Smooth	1.2× 10 ⁻⁸	3.3× 10 ⁻¹⁰	1.9× 10 ⁻⁸
	Rough	8.4× 10 ⁻⁵	2.7 × 10 ⁻¹⁰	2.0× 10 ⁻³
Middle and Bottom	Smooth	8.4 × 10 ⁻¹⁰	3.6 × 10 ⁻¹⁰	1.9 × 10 ⁻⁹
	Rough	2.5 × 10 ⁻⁹	1.7 × 10 ⁻¹⁰	8.3× 10 ⁻⁸
Bottom	Rough	1.3×10^{-9}	3.3 × 10 ⁻¹⁰	1.0× 10 ⁻⁸

18

Connecting People, Science and Regulation®

M. Rasmussen, B. Zurawlow. The Effect of a Plunger Surface Roughening Treatment on CCI, PDA Europe Parenteral Packaging Conference, Barcelona, Spain, 15 March 2017

COPYRIGHT © PDA 2018

pda.org

Conclusions

COPYRIGHT © PDA 2018

pda.org

Helium Leak Detection Conclusions

- Helium is a reliable, sensitive test
 - Capable of analyzing to MALL of most all products
- Application is extremely flexible based on:
 - Sample prep approach
 - Fixturing / chambering approach
- Powerful tool for package development, inherent integrity, and development of package integrity profile
 - Sensitivity allows for comparison of slight changes, such as component design
 - Flexibility allows for targeting of specific seal areas

