Optical Emission Spectroscopy, an emerging technology for CCIT

Instructor:

• *Philippe BUNOD*, *PhD.*; *Pfeiffer Vacuum; philippe.bunod@pfeiffer-vacuum.fr Business Development Pharma Europe – Integrity Test Solutions*

Structure

- 1. Pfeiffer Vacuum at a glance
- 2. The 3 CCIT technologies proposed by Pfeiffer Vacuum
- 3. Optical Emission Spectroscopy :
 - How does it work?
 - Influence and limiting factors
 - Advantages
 - Detection of gross leaks
- 4. Vacuum test methods / Microbial ingress risk
- 5. Conclusions

Pfeiffer Vacuum, leader in vacuum technology

3 equipments in our CCIT portfolio

Micro-flow sensor

HELIUM MASS SPECTROMETRY

Magnetic deflection spectrometer

OPTICAL EMISSION SPECTROMETRY

Multi-gas analyser (N₂, CO₂, Ar, H₂0,..)

Emerging Technology

O.E.S. – Operating principle

The Earth's invisible magnetic barrier prevents the energy given off by the Sun from boiling away our oceans and dissipating our life-sustaining atmosphere.

The northern lights (aurora borealis) are caused by solar wind and storms can generally be seen at about 70 degrees of latitude, near the Arctic circle.

O.E.S. – Operating principle

O.E.S. – Operating principle

pda.org

O.E.S. Sensor Design (Pfeiffer Vacuum patented technology)

Cold Cathode Inverted Magnetron design:

- Current (I) is fixed (few µA)
- High Voltage (Vdc) is adjusted to keep the intensity constant
- The plasma (ionized gas) is generated by electron collisions
- The light is collected by an optical lens and analyzed by an optical spectrometer

O.E.S. – Real time measurement

The air (N_2) inside the test chamber can be easily evacuated using vacuum pumps.

Moisture ($H_20 \rightarrow H \& OH$) is much more difficult to evacuate because it is coming from out-gassing of materials in contact with vacuum.

Massive leak detection prior to OES

- AMI includes a Massive Leak Detection module (>100µm)
 - GO/NOGO test = qualitative measurement.
- For Dry Filled Products, based on a volumetric method:
 - Pressure equilibrium between a vacuum tank and the test chamber.
 - The test chamber is designed in order to minimize the free volume around the sample and the vacuum tank is sized accordingly.
- For Liquid Filled Products, based on deep vacuum decay:
 - Pressure must be below the vapor pressure of water.
 - Free volume around the sample is not anymore an issue.
- Massive Leak Detection prevents equipment contamination
 - In case of Gross Leak (air/<u>liquid</u>), the high vacuum circuit and OES sensor are not contaminated. Only few components can be easily cleaned and dry.

pda.org

OES – Typical air leakage signal (raw data)

The air leakage corresponds to the intensity ratio $[N_2/H]$

In case of fine leak, the air leakage signal (N_2/H) increases as out-gassing (OH & H) is decreasing with time.

In case of gross leak (>100µm for 1cc headspace), depending on the headspace volume we can see the container being evacuated.

A set of 2 capillaries is used for calibration

- The air leakage provided by the capillaries depending on the CDA inlet pressure set up by the automatic pressure reducer.
- The M1 gauge measures the exact pressure just among the capillaries
- Calibration certificates are delivered for capillaries & pressure gauge

O.E.S. – Operating sequence

- 1/. Part loading (manually or automatically)
- 2/. Chamber evacuation (1000 → few mbar) (Massive Leak detection)
- 3/. Chamber pumping (few mbar \rightarrow <10⁻⁴ mbar)
- 4/. O.E.S. measurement start when pressure is $< 10^{-2}$ mbar
- 5/. Chamber venting (with Ambient air, dry N₂ or Argon)
- 6/. Part unloading

Permeation / Out-gassing / Leakage

For all global vacuum test methods, **Permeation** and **Out-gassing** flows correspond to virtual leaks and **limit the sensitivity.**

Permeation of air is generally slow and far below the MALL level. It **does not limit the sensitivity**.

Out-gassing flow is made of Water (80%) and others gas (20%). It decreases slowly when the time under vacuum increase. It strongly impacts the sensitivity and/or cycle time.

OES – Influence & limiting factors

For all vacuum test solutions: Detection limit \ when Test Duration /

- Out-gassing limit the sensitivity of the test, it can be minimized by:
 - Design of Container and test chamber (material, surface, roughness)
 - Controlling operating conditions: temperature (°C) and humidity (<30%RH)
 - Increasing the test duration... but that increase the risk to miss gross leaks!
- Gross leak detection can be challenging in case of small gas headspace volume combined with a low out-gassing drug.
 - Specific Massive Leak test can be performed prior to O.E.S measurements

O.E.S. – Measurements are volume independent

Measurement and sensitivity are not impacted by:

container expansion during the test
 → Tests can be performed on semi-rigid containers

O.E.S. – Method is not volume dependant

 \rightarrow 0.5µm defect (sharp edge orifice) can de detected in a batch of 10 vials and/or on 1 vial in the same test chamber.

O.E.S. - Selectivity

OES multi-gas sensor:

- different gases (N₂, H₂0, Ar, CO₂...) can be detected simultaneously
 → detection limit depends on the gas which is tracked for leak detection
- no interference with out-gassing,
 - \rightarrow Air / N₂ is tracked independently of moisture (out-gassing)
 - \rightarrow Air / N₂ is tracked independently of Argon used for chamber venting
- Air/N₂ leak and water leak can be detected simultaneously

AMI 1000, Unique Selling Proposition

- High sensitivity & high throughput
 - 10 sec to detect orifice < 0.4µm on glass vial
 - No impact of the test volume on the sensitivity (test per batch possible, up to 10, 50, 100)
- Selectivity
 - Air & water leaks can be measured/detected simultaneous
 - Possible selection of the tracer gas $(N_2, CO_2, Ar, H_20,...)$
- Versatile and easy to use
 - Applicable for various kind of non-porous packaging's
 - No sample preparation

pda.org

O.E.S. - Fast and sensitive

The Air Leakage raw signal corresponds to the intensity ratio $[N_2/H]$.

OES (Ambiant air venting) 23°C / 50% RH		
Detection Limit	Total Test Duration	
	Leak-3σ Blank+ 3σ	Leak-3σ Blank+ 6σ
2 µm	10 sec	10 sec
1 µm	10 sec	10 sec
0,5µm	10 sec	14 sec

Vacuum Test Methods/Microbial Ingress Risk

Correlation established by Kirsh & all, has been performed on glass vials using glass µ-pipettes artifacts.

The microbial ingress conditions used for this study corresponds to a **worst case**:

Figure 2 – The correlation of microbial failure rate (%) and the mean logarithm of the absolute leak rate and nominal leak diameter for modified SVPs. The absolute leak rate (standard cubic centimeter per second) was determined by mass-spectrometry based helium leak rate detection. Microbial failure was measured by microbial ingress after 24 hour immersion in a bath (37°C) containing 10⁸ to 10¹⁰ *P. diminuta* and *E. coli* organisms/ml and a 13 day. 35°C incubation

Conclusions

O.E.S. technology offers many advantages:

- Non-destructive and deterministic
- Easy to operate and easy to set-up (non sample preparation)
- **Versatile** (no format parts required)
- **Selective** (Air/N₂, Ar, CO₂, and water leaks can be detected simultaneously)
- Volume independent (test of complex product or test per batch)
- **High sensitivity** combined with **high throughput** (i.e.: 0.4µm orifice detected within 7 seconds on 20ml glass vials)
- In high sensitivity mode 0.2µm orifice can be detected

Conclusions

• AMI equipments, using O.E.S. spectroscopy have been qualified as IPC test for the production of blister packs (high sensitive inhalation drugs).

• Promising technology to perform high sensitivity 100% in-line leak testing.

 \rightarrow 0.4µm defect (sharp edge orifice) can be detected in 10 sec on glass vial tested one by one or by batch of up to 10.

Thank you for your attention !

Links http://www.pfeiffer-vacuum.com Email : philippe.bunod@pfeiffer-vacuum.fr

