pda.org

Gas Ingress for CCIT

Using laser-based headspace analysis

Josine Wilmer, Study Manager at LIGHTHOUSE 27-28 Feb 2020 - PDA CCIT Workshop Basel

Overview

Part 1: Theoretical background

- How does gas ingress work?
- How can theory be applied?

Part 2: Case study: products packaged under a modified atmosphere

100% inspection of lyophilized product

Part 3: Case studies: products packaged under a non-modified atmosphere

- Cold Storage CCI Study
- Gas Ingress Testing using CO₂ as a tracer gas

pda.org

Part 1 Theoretical background

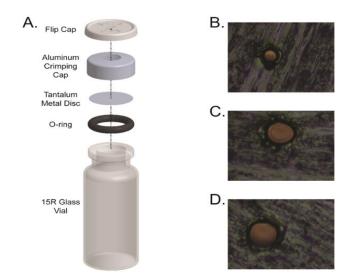
Gas ingress testing for CCI

Two different ways by which gas can flow through a defect in and out of a pharmaceutical container:

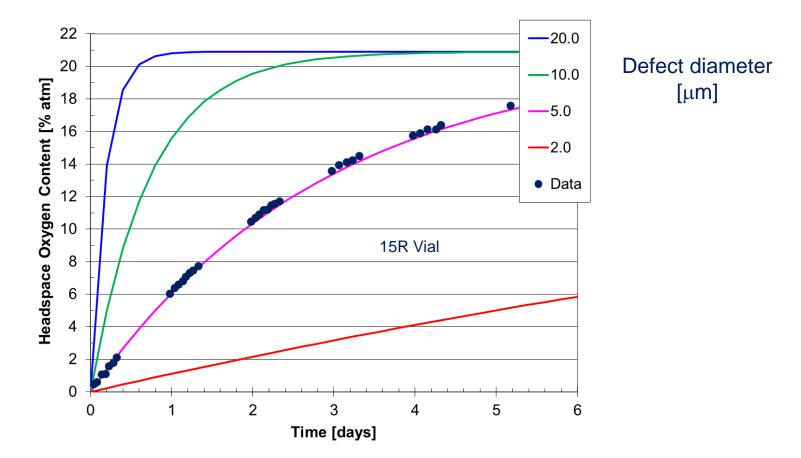
- Effusion: gas flow generated by a total pressure difference across the container defect
- Diffusion: gas flow of a particular gas generated by a partial pressure difference of that gas across the container defect

Understanding this gas flow enables the development of CCI test methods based on the measurement of gas ingress

Positive controls – validating headspace gas ingress methods

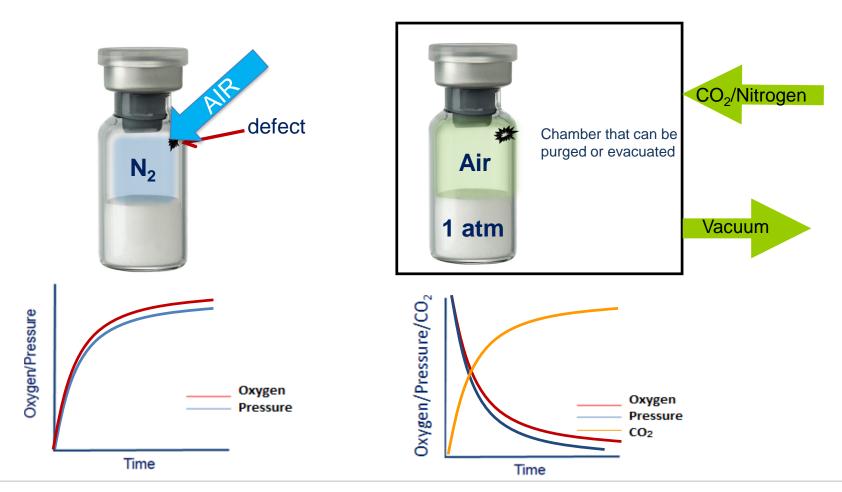

- CCIT methods based on detecting gas ingress into the headspace can be demonstrated and validated using known positive controls
- Gas flow physics model also enables calculation of test method sensitivity

Nominal hole size 5 µm


Image provided by Lenox Laser

Oxygen Diffusion Ingress Model Example

Predicted oxygen concentration versus time for ideal defects



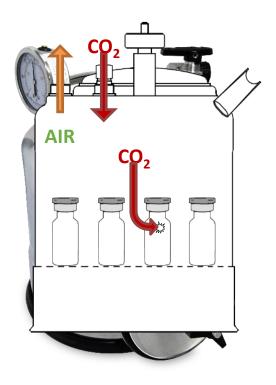
Published in PDA Journal Nov-Dec 2017 issue (71): 'Method Development for CCI **Evaluation** via Gas Ingress by Using Frequency Modulation Spectroscopy' [K. Victor]. p 429-453.

Headspace gas ingress as CCIT

Modified headspace

Non - Modified headspace

pda.org


Gas Ingress Testing for CCI

Objective

- Develop an approach similar to blue dye but better
- Method must reliably detect critical leaks

Proposed Gas Ingress Test Method

- Vials placed in CCI Test Vessel
- Vessel pressurized with X bar of CO₂ for Y min
- Samples removed and tested for headspace CO₂

Gas bath instead of blue dye bath

Headspace Analysis Systems

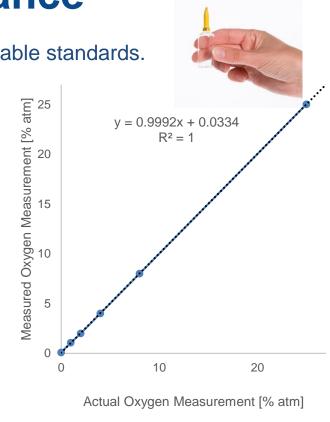
Laboratory and At-line Instruments and accessories

Automated Inspection Machines

SYNTEGON

Strategic partnership with Syntegon (formally Bosch) for CCI machines with Lighthouse laser measurement technology inside.

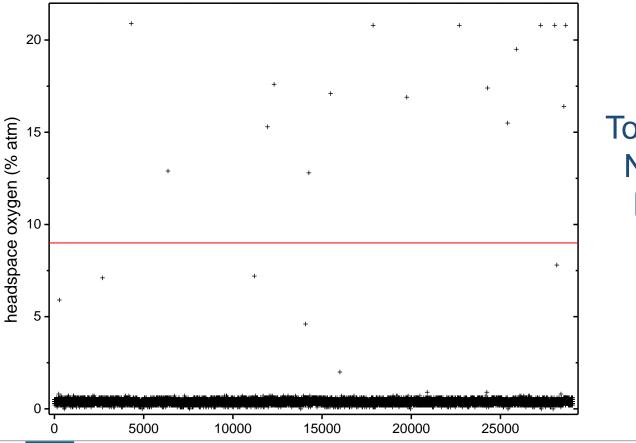
Measurement performance


Instrument and machine qualification using NIST traceable standards.

N=100	Headspace Oxygen (% atm)				
Standard Label	Known Value	Meas. Mean	Error	St. Dev.	
0	0.000	0.08	0.08	0.04	
1	0.990	1.06	0.07	0.06	
2	2.000	1.99	-0.01	0.07	
4	4.000	4.00	0.00	0.05	
8	8.000	8.00	0.00	0.07	
25	24.99	25.02	0.03	0.07	
		1	Ì Ì Ì	1	
			Accuracy	Precision	

- Certificates of NIST traceable calibration standards
- Optional yearly re-certification of standards

pda.org

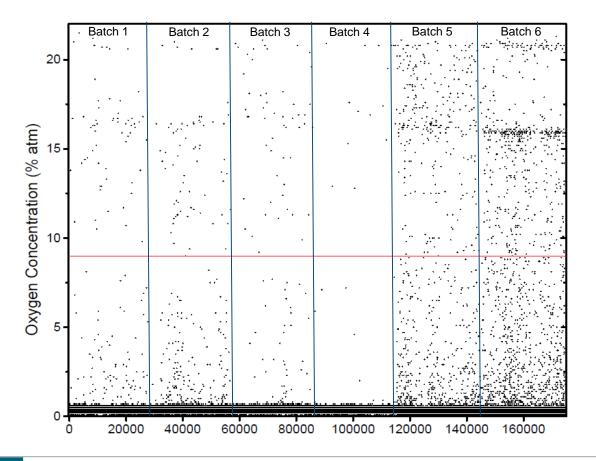

pda.org

Part 2 Case study – modified headspace

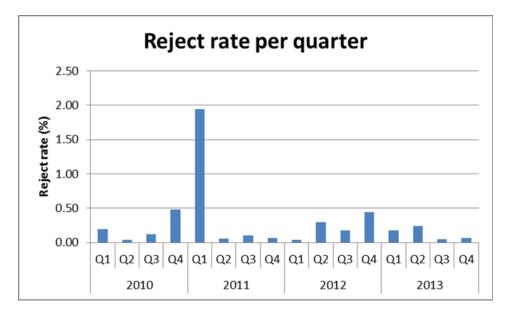


Total batch size: 29048 Number rejected: 16 Reject rate: 0.06%

pda.org



Total batch size: 29156 Number rejected: 568 Reject rate: 1.95%



pda.org

Case 100% inspection

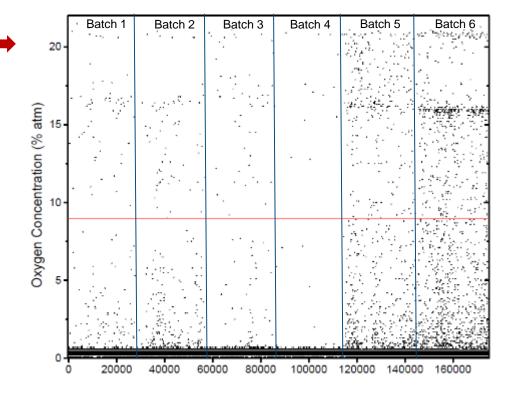
4 years of manufacturing data:

- 156 lots
- Total 1.6 million vials

Results

44-lots (28%) with zero rejects3-lots had > 2% reject rateAverage reject rate was 0.27%

It is difficult to manufacture a perfect batch



Think about the CCI control/testing strategy currently implemented in your company

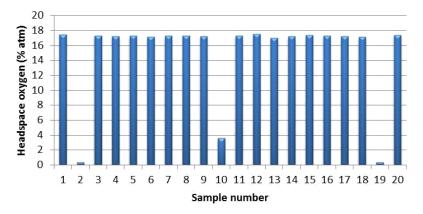
If your lyo sealing process is doing this would you know about it?

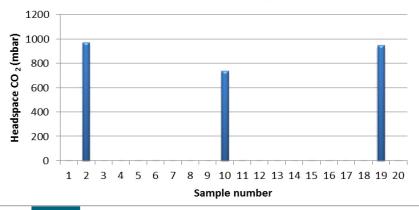
When would you know about it? After 1 batch? After 6 batches? After 30 batches?

What would you need to do to prevent this from happening?

pda.org

Part 3 Case studies – non-modified headspace



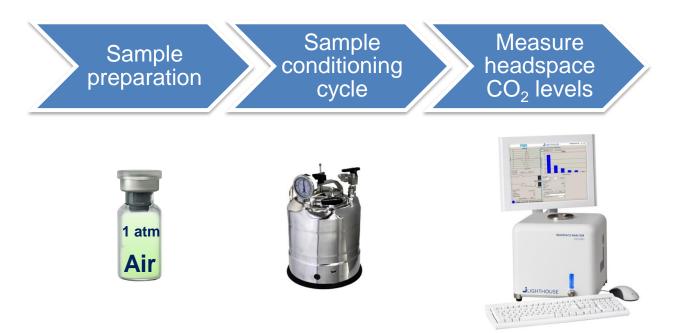


Case Study 2: CCI testing for vials stored on dry ice (CO₂)

Headspace oxygen

Headspace CO₂

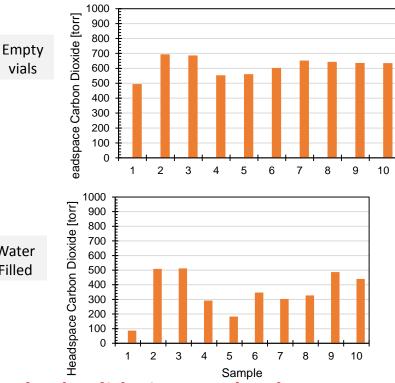
Case


- Air headspace vials stored on dry ice (CO₂)
- Storage on dry ice increases risk of CCI loss (CO₂ ingress)
 - Conventional rubber stoppers lose elasticity (<Tg)
 - Differing material coefficients of expansion (interface gaps)

Result

- 3 containers revealed decreased oxygen levels
- Same vials revealed increased CO₂
 levels

Gas Ingress Testing for CCI



Gas Ingress Testing for CCI

- Gas ingress testing using CO2 overpressure easily identifies positive controls.
- Empty vials show almost total headspace gas exchange (600 - 700 torr of CO_2) with the chosen CCIT vessel cycle.
- Filled vials with defects below the liquid fill also detected but with less sensitivity.
- Further method development studies have shown cases where defects below the liquid level are not detected.

Results for 5 µm laser-drilled defects

Robust CCI method development and method validation can be done to define appropriate test methods with this approach.

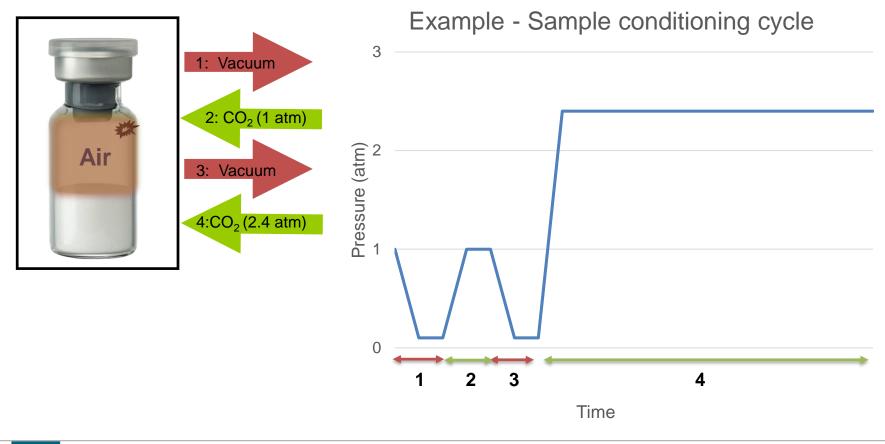
vials

Water

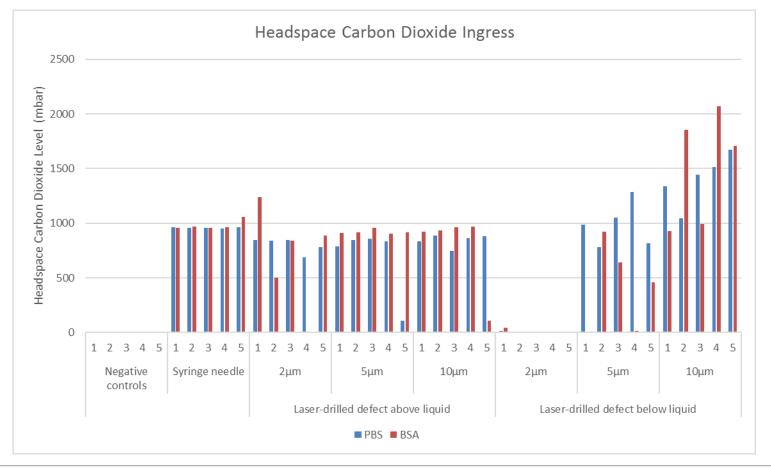
Filled

Case Study 3: CCI method development – CO₂ Headspace Gas Ingress

Objective: Detection of a 5µm laser-drilled defect within 15 min.


Sample set

- 2R DIN clear tubing vial air headspace
 - 2mL PBS liquid filled (150mM)
 - 2mL BSA liquid filled (1mg/mL)
- Positive controls:
 - 2µm, 5µm and 10µm laser drilled glass defects above and below liquid level
 - 25G syringe needle punctured through stopper


Case Study 3: CCI method development – CO₂ Headspace Gas Ingress

Case Study 2: CCI method development – CO₂ Headspace Gas Ingress

Case Study 3: CCI method development – CO₂ Headspace Gas Ingress

Doci	ulto
Resi	IITS

Defect type	Defect location	Leak detected	
		PBS	BSA
2 µm laser-drilled	Above liquid	5/5	5/5
	Below liquid	1/5	1/5
5 µm laser-drilled	Above liquid	5/5	5/5
	Below liquid	5/5	4/5
10 µm laser-drilled	Above liquid	5/5	5/5
	Below liquid	5/5	5/5
Gross defect	Stopper	5/5	5/5
Negative control	NA	0/5	0/5

Presence of product can affect defect detection. Defects type, size and location matters!

Headspace gas ingress as CCIT method

Blue dye test

- Ingress of methylene blue
- Qualitative visual inspection
- Destructive method
- Permanent leaks
- Useful for gross leak detection, CCI verification

Methylene blue: C₁₆H₁₈N₃SCI

Laser-based headspace

- Ingress of O_2 , N_2 and/or CO_2
- Analytical measurement
- Non-destructive method
- Permanent and temporary leaks
- Sensitive to all leak sizes
- Quantitatively described by gas flow physics

Diatomic gas molecule

Similar to blue dye but much more sensitive, can be validated as an analytical method, can be used in all stages of the product life cycle

pda.org

Thank you!

