

What a difference the past several years have r for ATMPs coming into the marketplace!	made	
2017/2018	market approved	
Kymriah (CANCER – CAR T-cell gene therapy)	FDA/EMA	
• Yescarta (CANCER – CAR T-cell gene therapy)	FDA/EMA	
Luxturna (VISION – RPE-65 protein restoration – virus gene therapy)	FDA/EMA	
Alofisel (FISTULAS – allogeneic somatic adipose stem cell therapy)	EMA	
<u>2019/2020</u>	market approved	
 Zolgensma (SPINAL MUSCULAR ATROPHY - SMN, survival motor neuron, protein restoration – virus gene therapy) 	FDA/EMA	
 Zynteglo (β-THALASSAEMIA – β-globin protein restoration – hematopoietic stem cell gene therapy) 	[FDA]/EMA	
 Roctavian (HEMOPHILIA A – clotting factor VIII restoration – virus gene therapy) 	[FDA]/[EMA]	
 Liso-Cel (CANCER – CAR T-cell gene therapy) 	[FDA]	
Ide-Cel (CANCER – CAR T-cell gene therapy)	[FDA*]	
[under regulatory authority review for market approval]		
(* Refusal to file due to CMC deficiencies)		10

Press Releases

December 07, 2019

Kite Announces Long-term Data From ZUMA-1 Showing Approximately Half of Refractory Large B-cell Lymphoma Patients Were Alive Three Years After Yescarta Treatment

- <u>47 Percent of Refractory Large B-cell Lymphoma Patients in ZUMA-1 Pivotal Phase 2</u> Cohorts Were Alive Three Years after a Single Infusion of Yescarta --

vs Chemotherapy: <u>only 20 percent of patients were alive at 2 years</u> Blood. 2017 Oct 19; 130(16): 1800–1808.

FDA:	ts about patient safety!	
	Some vectors, including AAV, can package a large amount of non- vector DNA (e.g., plasmid DNA, helper virus sequences, cellular DNA), and it may not be possible to remove or reduce this DNA from the product to a level to assure safety based on current guidance (Ref. 12). Therefore, we strongly recommend that the cell lines and helper sequences used to make viral vectors that package non-vector DNA, such as AAV, be carefully chosen to reduce the risks of the product. Sponsors should provide necessary quality data, risk assessments, and/or details of their process and product control strategy to address and mitigate potential risks posed by the manufacturing systems used.	
U.S. FOOD & DRUG	Chemistry, Manufacturing, and Control (CMC) Information for Human Gene Therapy Investigational New Drug Applications (INDs) Food and Drug Administrat Center for Biologics Evaluation and Resea January 2	tion arch a020
We re phase	commend the following steps to establish the appropriate manufacturing environment for 1 investigational drugs:	
•	A comprehensive and systematic evaluation of the manufacturing setting (i.e., product environment, equipment, process, personnel, materials) to identify potential hazards	
•	Appropriate actions prior to and during manufacturing to eliminate or mitigate potential hazards to safeguard the quality of the phase 1 investigational drug	
FDA U.S. FOOD & DRUG	Guidance for Industry Food and Drug Administration CGMP for Phase 1 Investigational Drugs Center for Biologics Evaluation and Research (CDER) Ju	ıly 2008
		52

When identifying the control/mitigation measures that are most appropriate in each case, the ATMP manufacturer should <u>consider all the potential risks related to the product or</u> the manufacturing process on the basis of all information available, including an assessment of the potential implications for the quality, safety and efficacy profile of the product, as well as other related risks to human health or to the environment. When new information emerges which may affect the risks, an assessment should be made whether the control strategy (*i.e.* the totality of the control and mitigation measures applied) continues to be adequate.

The quality and safety of the product needs to be ensured from the first stages of development. Nevertheless, it is acknowledged that there is a gradual increase in the knowledge of the product and that the level of effort in the design and implementation of the strategy to ensure quality will step up gradually. It follows that the manufacturing procedures and control methods are expected to become more detailed and refined during the more advanced phases of the clinical trial.

Good Manufacturing Practice for Advanced Therapy Medicinal Products 22.11.2017

1.	You failed to establish a quality control unit with the responsibility and authority to approve or reject all components, drug product containers, closures, in-process materials, packaging material, labeling, and drug products. 21 CFR 211.22(a).
2.	You failed to establish and follow appropriate written procedures that are designed to prevent microbiological contamination of drug products purporting to be sterile, and that include validation of all aseptic and sterilization processes. 21 CFR 211.113(b).
3.	You failed to perform operations within specifically defined areas of adequate size and to have separate or defined areas or such other control systems for aseptic processing necessary to prevent contamination or mix-ups. 21 CFR $211.42(c)(10)$.
4.	You failed to have facilities used in the manufacture, process, packaging and holding of drug products of appropriate construction to facilitate cleaning, maintenance, and proper operations. 21 CFR 211.42(a).
5.	You failed to thoroughly investigate any unexplained discrepancy or failure of a batch or any of its components to meet any of its specifications, whether or not the batch has already been distributed. 21 CFR 211.192.
6.	You failed to establish an adequate system for monitoring environmental conditions in aseptic processing areas. 21 CFR 211.42(c)(10)(iv). An operator produced drug products intended to be sterile with an exposed wrist and exposed
	facial hair.

Tuesda	ay, April 19, 2016
State	ement on Review of NIH Sterile Production Facilities
In ligh	nt of serious problems identified in the NIH Clinical Center Pharmaceutical
for pa	atient safety and quality of care at the hospital are of the highest
standa	rds. Accordingly, NIH hired two companies specializing in quality assurance for
manufa	acturing and compounding — Working Buildings and Clinical IQ — to evaluate all of its
faciliti	es producing sterile or infused products for administration to research participants.
This e	valuation is underway and preliminary findings have identified facilities not in
compli	ance with quality and safety standards, and not suitable for the production of sterile
or infu	sed products. As a result, production has been suspended in two facilities: a National
Cancer	r Institute laboratory engaged in cell therapy production and a National Institute of
Mental	Health facility producing positron emission tomography (PET) materials.

National Institutes of Health Bethesda, Maryland 20892 DEPARTMENT OF HEALTH & HUMAN SERVICES www.nih.gov Division of Environmental Protection/ORE March 27, 2018 Modern facilities are critical for NIH to perform their mission. The construction of the new Current Good Manufacturing Practice (cGMP) laboratory unit will allow NIH to create a new modern facility and help perform its mission. **SCOPE OF THE PROJECT:** The National Cancer Institute (NCI) is in urgent need of a new Tumor Infiltrating Lymphocytes (TILs) production facility to serve NCI Surgery Branch at the National Institutes of Health (NIH) Bethesda Campus. The new program under this project involves design and construction of a Current Good Manufacturing Process (cGMP) modular facility. This proposed project will relocate the existing NCI Cell Processing Facility from Building 10 into a new modular cGMP cell processing facility, external to Building 10, but on the NIH campus premises. The new proposed facility is to provide more ISO controlled space for the NCI Surgery Branch, enabling a greater throughput of product. The new manufacturing program operated in this facility is required to comply more closely with the latest cGMP, CGTP, and Food and Drug Administration (FDA) requirements and regulations. This facility is required to produce reliable TIL doses for safe injection into human subjects in compliance with FDA Regulations and requirements. **CAPA** completed 68

4. P <u>remises</u>	
4.1. General principles	
4.10. Premises must be suitable for the operations to be carried out. In particular, the	ey should
be designed to minimise the opportunity for extraneous contaminatio	n, cross-
contamination, the risk of errors and, in general, any adverse effect on the	quality of
products.	
•	
Basic GMPs for 'Fit-for-Use' Manufacturing Facility	
 Designed to permit production in a logical order corresponding to the sequence of the operations and required level of cleanliness 	
Cleaning, maintenance and repair	
Lighting, temperature, humidity, ventilation	
Appropriate air cleanliness classification	
 Environmental monitoring (air pressure differentials; non-viable/viable air; viable surface/personnel, etc.) 	
Pest control	
Prevention of entry of unauthorized personnel	
 Restrictions on what operations are allowed in facility 	
	70

Raw materials are the r	reagents that are used during the manufacturing proce	ess but are not part of the
final product. Examples	include foetal bovine serum, trypsin, digestion enzym	es (e.g., collagenase,
DNAse), growth factors	, cytokines, monoclonal antibodies, antibiotics, resins,	cell-separation devices
and media and media o	omponents. Reference to quality standards (e.g. comp	endial monographs or
manufacturer's in-hous	e specifications) should be made. Information on the c	quality and control of no
compendial materials s	hould be provided. Information demonstrating that ma	terials (including
biologically-sourced ma	terials, e.g. media components, monoclonal antibodies	s, enzymes) <u>are suitabl</u> e
for their intended use s	hould be provided. While raw materials should be of pl	harmaceutical grade, it
acknowledged that, in s	some cases, only materials of research grade are availa	able. The risks of using
research grade materia	Is should be understood (including the risks to the con	tinuity of supply when
larger amounts of prod	uct are manufactured)	

DA U.S. FOOD & DRUG ADMINISTRATION FDA's definition of starting material, <i>intermediate, drug substance</i>
iii. Banking Systems (Starting Materials)
A banking system improves control and consistency in the manufacturing of many biologics. Banking assures an adequate supply of equivalent, well-characterized material for production over the expected lifetime of production. For these reasons, banked materials are a common starting point for many routine production applications. We outline our current thinking for the qualification of different banking systems below, including banks of cell substrates for production of viral vectors, banks of bacterial/microbial cells, allogeneic donor cell banks, and banks of viral vectors. We recommend that you provide a summary of the testing in this section, and COAs in section 3.2.A.2 of the CTD.
OD & DRUG Auton Chemistry, Manufacturing, and Control (CMC) Information for Human Gene Therapy Investigational New Drug Applications Center for Biologics Evaluation and Research January 2020

Type and source of material	Example product	Application	of this guide to man	ufacturing steps sho	wn in grey
	Gene therapy: genetically modified cells	Donation, procurement and testing of starting tissue / cells ¹	Vector manufacturing; cell isolation, culture and purification	Ex-vivo genetic modification of cells, Establishment of MCB, WCB or primary cell lot	Formulation, filling
Human and/or animal sources	Somatic cell therapy	Donation, procurement and testing of starting tissue / cells ¹	Establishment of MCB, WCB or primary cell lot or cell pool	Cell isolation, culture, purification, combination with non-cellular components	Formulation, combination, fi
	Tissue engineered products	Donation, procurement and testing of starting tissue / cells ¹	Initial processing, isolation and purification, establish MCB, WCB, primary cell lot or cell pool	Cell isolation, culture, purification, combination with non-cellular components	Formulation, combination, fi
Non-Human	Gene Therapy: in Vivo Viral Vectors by stable producer cell lines	Plasmid manufacturing ¹	Producer cell lines manufacturing	Vector Manufacturing	Formulation, filling
and/or animal sources	Gene Therapy: in Vivo Viral Vectors by transient production system	Virus manufacturing ¹	Cell system manufacturing	Vector Manufacturing	Formulation, filling
	Increas	ing GMP regu	irements		>

Depending on the consequences of the change introduced and the stage of development, a comparability exercise may be necessary to ensure that the change does not have an adverse impact on impact on the quality of the product and therefore on the safety and clinical efficacy of the product. The main purpose of this exercise is to provide assurance that the post-change product is suitable for the forthcoming clinical trials and that it does not raise any concern for the safety of the patients included in the clinical trial. The extent of the comparability exercise needed depends on the nature of the change introduced and the stage of development.

During early phases of non-clinical and clinical studies, comparability testing is generally not as extensive as for an approved product.

When exploratory trials already took place, data filiation program should expand to a full comparability exercise where a higher degree of sameness is expected and a more comprehensive analytical package should be in place. For confirmatory trials, the principles as can be found in ICH QSE Comparability of <u>Biotechnological/Biological Products should be applied</u>. During the confirmatory clinical studies introducing changes to the manufacturing process and the final product should be avoided, because comparability issues may impact the acceptability of the data.

Guideline on quality, non-clinical and clinical requirements for investigational advanced therapy medicinal products in clinical trials

A: The potential impact of the proposed change should always be evaluated for its risks to the quality of the final product and the impact on the efficacy and safety profile of the product. The overall extent of the comparability exercise for ATMPs should therefore be driven by a risk-based approach (RBA). Namely, the RBA should be used to determine an appropriate amount of comparability data and to select a suitable set of relevant critical quality attributes (CQAs) to be compared, taking into account the stage of product development and the number of batches available.

Q5: At what timepoint during the product life cycle should comparability be demonstrated?

A: It is of importance that the changes implemented in all stages of development are fully evaluated, justified and tracked. Different kinds of changes may be introduced at different phases throughout development. The evaluated risk associated with the change and possible impact on the finished product impact also the focus and level of the expected comparability exercise (see Question 3).

Questions and answers Comparability considerations for Advanced Therapy Medicinal Products (ATMP)

6 December 2019 EMA/CAT/499821/2019

	CASE EXAMPLE CMC struggling to keep pace with expedited Clinical!
EB-	101 is an investigational, autologous, gene-corrected cell therapy
FDA clinical	expedited designations received: RMAT, Breakthrough Therapy, Rare Pediatric
CLEVELAND an	d NEW YORK, May 31, 2018 (GLOBE NEWSWIRE) Abeona Therapeutics Inc. (Nasdaq:ABEO),
a leading clinica	I-stage biopharmaceutical company focused on developing novel gene and cell therapies for life-
threatening rare	diseases, announced today the opening of The Elisa Linton Center for Rare Disease Therapies, the
commercial GMF	P manufacturing facility for gene and cell therapies in Cleveland. Ohio. The GMP facility will have
the capability to	manufacture clinical and commercial grade products over Abeona's multiple programs, including
recessive dystroj	obic epidermolysis bullosa (RDEB) and Sanfilippo syndrome. The ribbon-cutting ceremony and first
facility walk-throu	ugh will be held today, May 31, 2018. Now the new facility has to produce comparable product
NEW YORK and	CLEVELAND, Sept. 23, 2019 (GLOBE NEWSWIRE) Abeona Therapeutics Inc. (Nasdaq: ABEO),
a fully-integrated	d leader in gene and cell therapy, today announced that it has recently received a clinical hold letter
from the U.S. Fo	bod and Drug Administration (FDA) clarifying that the FDA will not provide approval for the Company
to begin its plan	and Phase 3 clinical trial for EB-101 until it submits to the FDA additional data points on transport
stability of EB-1	01 to clinical sites. Over the last 12 months, the Company has worked closely with the FDA to
address and nan	row open Chemical, Manufacturing and Controls (CMC) items and has been working to resolve this
one item identifi	ed in the FDA Clinical Hold Letter. The Company continues to anticipate receiving CMC clearance
for VIITAL [™] tria	l in Q4 2019. Clinical hold released December 2019

	<u>Illustration</u> of a Q1	TP template for Cellular Therapy
	Category of Attributes	Criteria (Example)
t	Therapeutic Indication	Orthopedics, immune, cardiovascular
s Inc	Dosage Form	Liquid suspension, tissue equivalent, cryopreserved, fresh
õ H	Dose Regimen	Daily, monthly, single infusion
르운	Volume per Dose	mL
a tr	Container Closure System	Bag, vial, sterile-sealed
ā	Stability and Storage Conditions	2-8 °C, 18-25 °C, cryopreserved in vapor phase LN ₂ , <-130 °C
	, ,	Microbial testing which, depending on the nature of the
	Safety	product is likely to be based on a multidimensional approach
		encompassing in-process and final-product testing
		Tests to distinguish the specified cells through physical or
		chemical characteristics of the cell line (i.e. phenotype
	Identity	anotype, or other markers: aPCP of transgone: tissue.
es		genotype, of other markers, qr ok of transgene, ussue-
pr		specific gene expression)
Ē	Content	#cens/dose, #cens/cm , cens/kg, active (transduced) cens/kg
Ā		Viability
lity		Tests to assess product purity, considering the product
Sua	Purity	(e.g., live cells, dead cells)
#		Process-related impurities (e.g., contaminating cells, cellular
ň		fragments) viral residuals paramagnetic heads residual
ŏ	Impurities	detorgent enzyme or other potent compounds that are used
6		in processe, but are not desirable in a drug substance
ň		In process, but are not desirable in a drug substance
		measure of the relevant product biological functions
	Determine	Method to assess product biological activity based on the
	Folency	different elements involved with the MoA, often multiple tests
		evolving from specific markers in early stage to more
		runctional assays at later stage
	General	Appearance, visible particulates, packaging

		Illustrati	ion of	CQA determination for Cellular Therapy
Attribute	Severity	Uncertainty	Result	Rationale
				Visual appearance
Visible Foreign Particles	High	Medium	CQA	Absence of visible foreign particles is expected for all parenterals
				Identity
Expression of	High	Low	004	An autologous chondrocyte product must contain chondrocytes, which are
Chondrogenic Markers	nigii	LOW	CQA	characterized by their expression of specific chondrogenic markers
				Impurities
Fibroblastic Cells	High	Medium	CQA	Available data suggests fibroblasts may interfere with stable hyaline cartilage regeneration
			Non	In products manufactured to date, measured trypsin levels are 10x less than levels
Residual Trypsin	Low	Low	NON-	known to have a biological effect; as human recombinant trypsin was used, there is
			CQA	no risk for an immune reaction
			Non-	Collagenase is added to the process at levels 100x below the level known to have a
Residual Collagenase	Low	Medium	CQA	biological effect
Residual Fetal Bovine	High	Medium	CQA	Levels in final product known to potentially impact safety
Dead Cells	Medium	Low	CQA	Presence of dead cells monitored through cell viability
				Potency
				Lack of function will inevitably result in a lack of clinical efficacy; expression of
Functional Activity	High	Low	CQA	specific genes is measured as surrogate assay for function
				Strength/Dose
Total Cell Number/ Dose Unit	Medium	Low	CQA	Link between dose and efficacy needs to be established during development
				Safety
Fudatavia	Link	1	004	Endotoxins (mainly lipopolysaccharides from gram negative bacteria) are highly
Endotoxin	High	LOW	CQA	pyrogenic substances that cause dose-dependent fever and shock
Ote-silite -	Liberte	1	004	Sterility is a general safety requirement for all parenteral dosage forms to assure th
Sternity	rign	LOW	CQA	cell products are free of microbial contamination
				Mycoplasma can cause serious contamination in cell cultures, which may affect
Mycoplasma	High	Low	CQA	phenotypical characteristics and normal growth of the cells; a few species can be
				pathogenic
				Manufacture requires use of cell substrates and raw materials of human and animal
Adventitious virus	High	Low	CQA	origin that could be contaminated with a virus, which potentially can be carried ove
	-			into the product

PDA T	echnical Report 81	Cell-Based Therapy Co	ontro	l Stı	ate	gy (20
-	Unit Operation Step	Process Parameter	CQA A	CQA B	CQA C	сод
		Number of trays or flasks				
СРР	Ę	Seeding density for each expansion				
pCPP Non-CPP	Expansio	Media volume for each expansion				
		Incubation time for each expansion				
		Incubation temperature for each expansion				
		% CO ₂ during expansion				
	_	Wash volume following expansion				
	Was	Wash time				
	-	Wash agitation				
	ž	Volume of trypsin				
	Ĕ	Detachment time				
	etac	Detachment temperature				
	ă	Handling of trays to dislodge cells				

