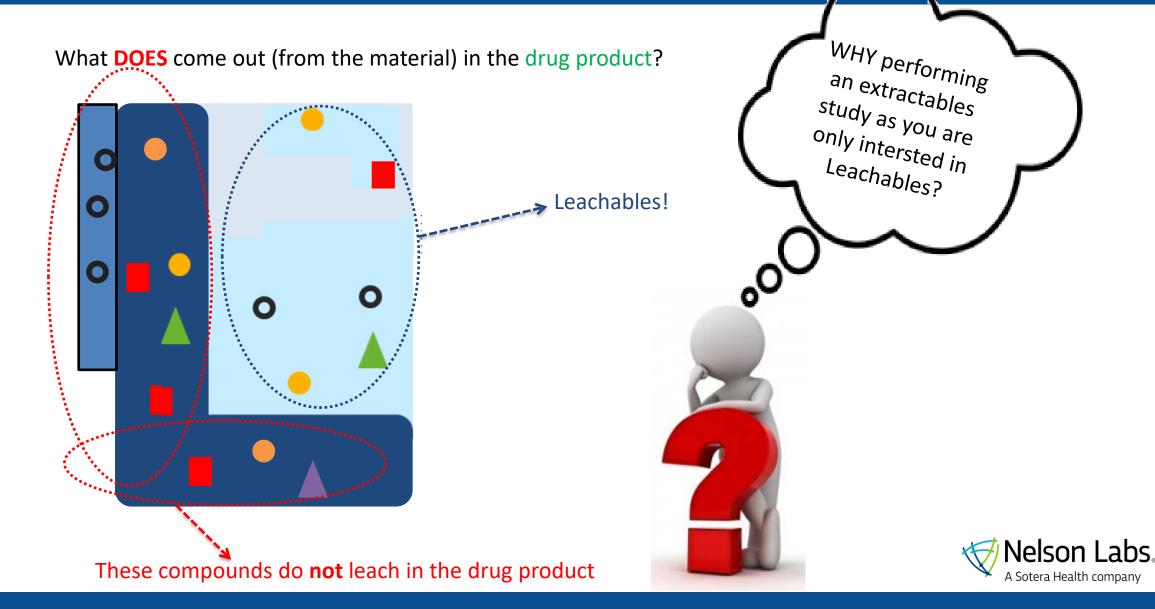
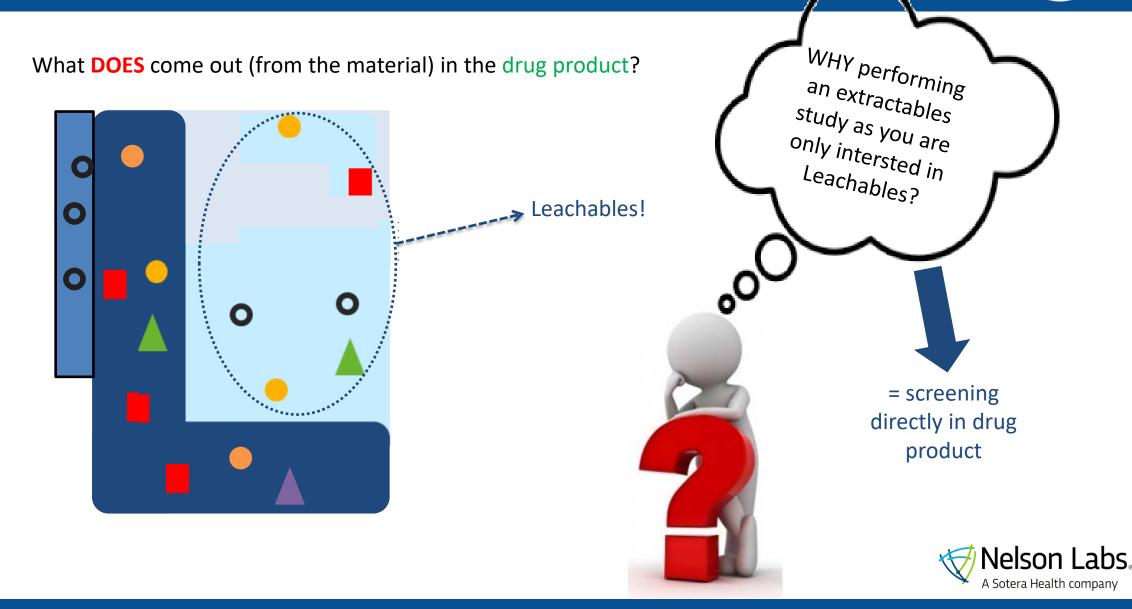
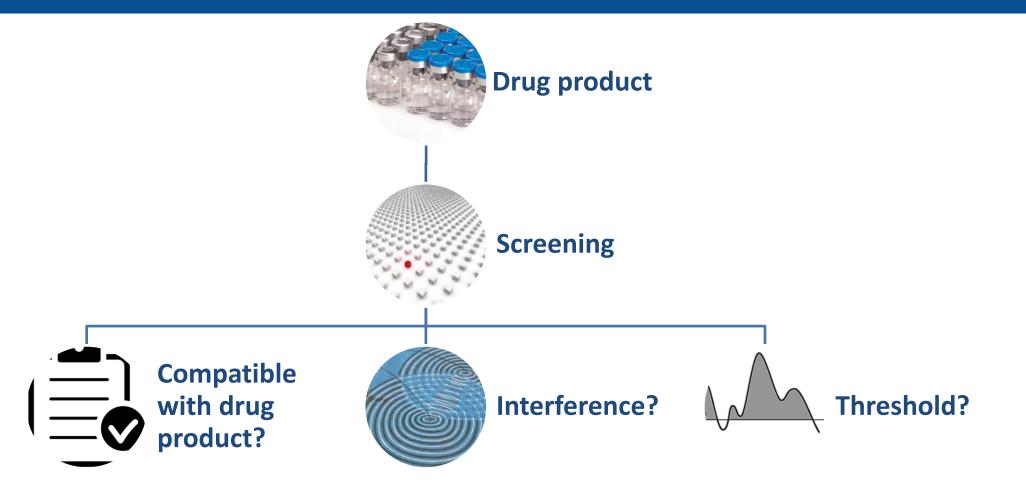

Setting up extractables studies

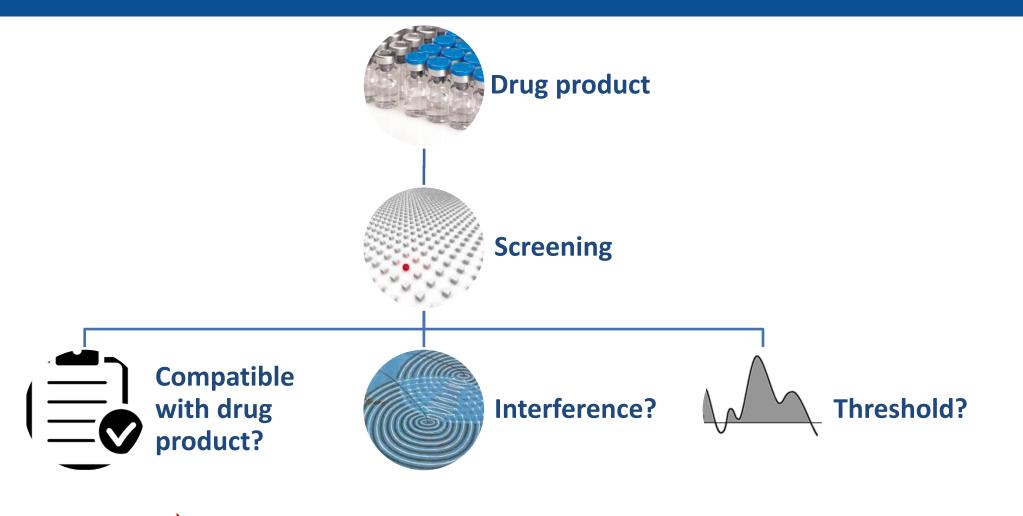
Controlled extraction studies

Dr. Dries Cardoen









THE ANSWER: YOU NEED EXTRACTABLES DATA

What is the PURPOSE of an extraction study?

- <u>Material characterization</u> of the packaging components
- <u>"Impurities profiling"</u> of the materials
 - Identify as many compounds as possible
 - Identify "bad actors" in the materials
- Early risk evaluation: potential *patient exposure* to chemical entities
- Allows to establish leachables extractable correlations
- In certain cases (more applicable to OINDP): Facilitates extractable specifications of acceptance criteria.
- Identify compounds that may need to be <u>monitored as leachable</u>
 - Toxicity
 - Concentration in the materials
 - Risk for migration

Regulatory guidance

USP <1663> Monograph

"Assessment of Extractables Associated with Pharmaceutical Packaging/Delivery Systems"

This is an **INFORMAL** monograph

Best Demonstrated Practice Recommendations: **Chemistry** & Toxicology

This is a **RECOMMENDATION**

REMARK: In Some Cases, Reference to the ISO 10993-12 (Medical Devices) can be Made to Determine the Extraction Conditions prior to Analysis.

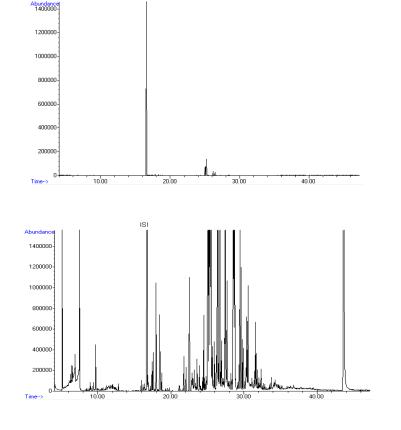
These two documents ar either INFORMAL or RECOMMENDATIONS

Allow flexibility in design

What is the *intent*? => **Strategy** of testing

How to design the study for the envisioned intent? => **Tactics**

However, justification is needed!


Both **identifying the necessity** for an extraction study, as well as **justifying the design**, is the responsibility of the <u>holder of the NDA</u>.

Depending upon the design of E-studies

1. LOW Nr of extractables

ISI

2. HIGH Nr of extractables

HOW CAN THIS BE HARMONIZED?

GENERAL INFORMATION

Product Name, Product N[°], Type, Manufacturer, Physical properties...

CERTIFICATES of compendial tests

USP<381>, USP <87>, USP<88>, EP 3.2.9, JP<49>, ISO 8871

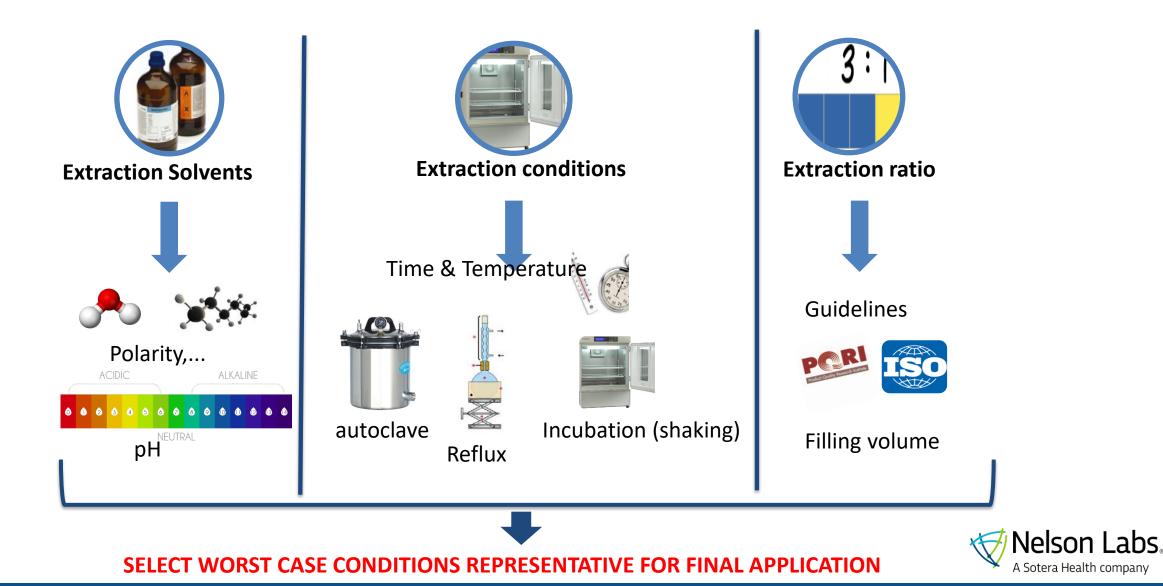
INGREDIENTS OF RUBBER/PLASTIC

Very useful information, but this will not tell the complete E-story!!

EXTRACTABLES DATA FROM SUPPLIER

Highest Level of information ! Check relevancy of technical and testing conditions!!

DESIGN SPACE OF AN EXTRACTABLES STUDY


VARIABLES that may/will have an impact on the study design of an extractables study

- The classification & specific requirements per drug product
 - Table 1 in FDA C/C-Guidance (1999)
 - Decision tree in the EMA-Guideline (2005)
 - USP<1664>
- The **composition of the DP**, in contact with the C/C system
- The **type of contact** between the DP and the C/C system
 - Primary packaging
 - Secondary packaging (e.g. needle shield, label,...)
- The **types of materials** used in te manufacture of the C/C
 - E.g. rubber versus polyolefin for BFS
- The knowledge on the composition of materials (from vendor)
 - Additives, catalysts, oligomers, colorants,...
- The use of the data
 - Only for this particular application, or also for other DP?
- Packaging versus Manufacturing Equipment
 - Dedicated session

DESIGN SPACE OF AN EXTRACTABLES STUDY

Perform E-study in Drug Product (Vehicle), suggested in:

FDA-Container/Closure Guidance (1999), (eg parenteral/Ophthalmic)

If the extraction properties of the drug product vehicle may reasonably be expected to differ from that of water (e.g., due to high or low pH or due to a solubilizing excipient), then drug product should be used as the extracting medium.

EMEA-Guideline - immediate packaging (2005)

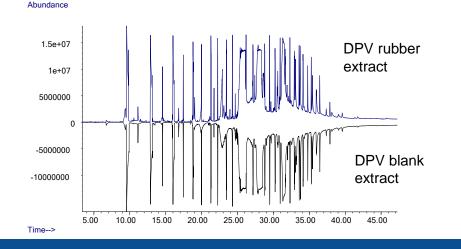
stress conditions to increase the rate of extraction. The solvent used for extraction should have the same propensity to extract substances as the active substance/dosage form as appropriate. In the case of medicinal products the preferred solvent would be the medicinal product or placebo vehicle. The

USP<1663>

qualitative and quantitative extractables profile. This is clearly stated in regulatory guidances and best practice recommendations (1, 4, 5). Therefore, the most logical *tactic* for this simulation study is to use the formulation itself as the extracting medium and in the absence of complicating factors, such an approach is recommended. However, in certain cases the use of the formulation as an extracting medium complicates extract characterization to such an extent that it is impractical. The various guidances and recommendations suggest that if the use of the drug product as the extracting solvent is not feasible, then the drug product vehicle, or placebo, could be used as an effective extracting medium. This recommendation is derived from the fact that the drug substance itself does not typically create the "leaching power" of a drug product but rather that it is the formulation's ingredients (drug product vehicle) that establish the drug product's ability to leach substances from a contacted material.

ADVANTAGE: simulation of extractables behaviour in DP(V): same extraction propensity!

DISADVANTAGE: Risk of missing the presence of compounds - Matrix interference of DP(V)

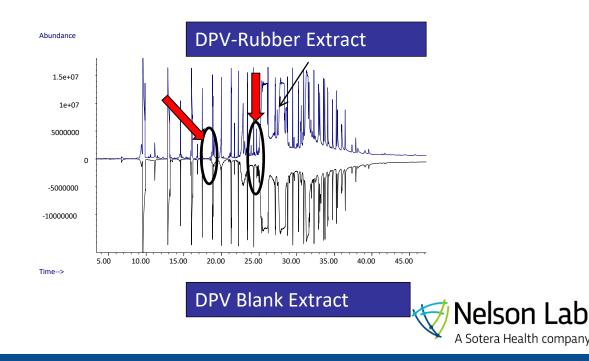

Risk of misinterpretation of analytical data

- DP(V) Matrix degradant may be misinterpreted as extractable!

Risk of underestimating the concentration of compounds

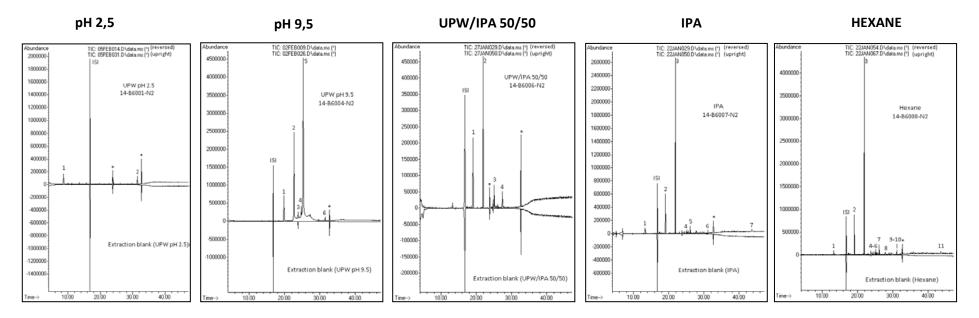
- Extraction conditions - may potentially be too mild

- Difficult to select the right set of extraction conditions (e.g. Extraction time, temperature!)



Chemical Nature of the Extracting Medium (USP<1663>)

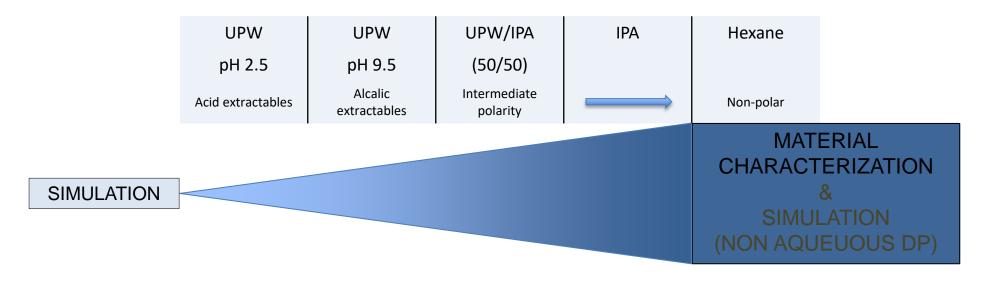
If: PURPOSE: simulating worst case EXT-profile


- Look for Similar or Greater Extraction Propensity
- That gives Similar Qualitative and Quantitative EXT-profile
- **o** Use Drug Product Formulation
 - May be complex or impractical
- DPV/Placebo can be an Alternative
 - REMARK: Extraction at High T with DP/DPV may lead to degradation (eg Polysorbate)

Example: *Extraction of a rubber component*

GC/MS Semi-Volatile Organic Compound "Profile"

IS: Internal Standard for GC/MS

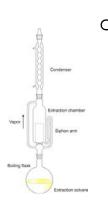

*: Internal Standard for LC/MS (not used in this GC/MS evaluation)

REMARK: Notice the Substantial "Visual" Difference in Extraction Profiles for the Different Extraction Solvents!

PCRI P(O)DP best demonstrated practice **recommendations**

Recommendations:

- It is not mandatory to always include these 5 solvents
- The solvents should be adjusted to the physico chemical properties of the DP
- Justifications!!


Mechanism of Extraction – Extraction Technique

Reflux or Soxhlet Extractions

o Similar Extraction yields

- <u>Reflux</u> has shown in limited cases to <u>introduce artefacts</u> in extraction profile
 - Degradation of extractables during Relfux could occur

- <u>Soxhlet</u> has more <u>practical implications</u>
 - Takes longer (24h) to have the same extraction yields as reflux (8h)
 - Safety implications in Lab (24h extraction)
 - $\,\circ\,$ Less practical for solvents with high boiling points
 - Less practical for aqueous extraction vehicles
 - Not to be used when *pH adjusted solvents* or *mixtures (e.g.IPA/UPW)* are used

Sonication

- Less exhaustive than reflux & soxhlet (PQRI)
- However, it may be less detrimental to certain materials
- Often used as the extraction technique for labels
 - > Avoids desintegration of label, while extracting most relevant compounds
- Difficult to control (see USP<1663>)

Closed vessel

- Closed vessel avoids loss of **VOLATILE Organic Compounds**
- Typically ISO 10993-12 Conditions can be Used (e.g. 50° C, 72h)
- In general, a 24h SV-extraction at a temperature of 10° C below boiling point is equivalent in yields to an 8h reflux extraction

PDA Parenteral Drug Association

Neat Headspace enrichment

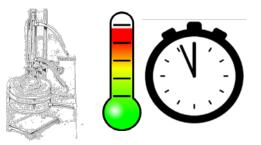
- Direct analysis of the material using Headspace GC/MS
- Complete profile of VOLATILE Organic Compounds
- Water soluble Compounds are better detected (often a problem for Headspace GC on aqueous extracts)

"In Situ" extraction

- Container is filled with extraction solution, capped with closure and incubated.
- Allows "one sided extraction"
 - Coated rubbers
 - Sealing discs for cartridges
 - Multi-layer foils
- Better simulation, less exhaustive

Consideration for "In-Situ" Extractions:

- Static Extraction: Pharmaceutical Packaging
- Dynamic Conditions, often considered for Production Items
 - Tubings
 - Filters
 - Pump systems (also for IV administrations)
- Dynamic extraction is a better simulation if the contact between the components and the DP/DS is also dynamic,



USP<1663> "Generating the extract" section "Extraction time and temperature"

The combination of extraction time and temperature establishes the magnitude of

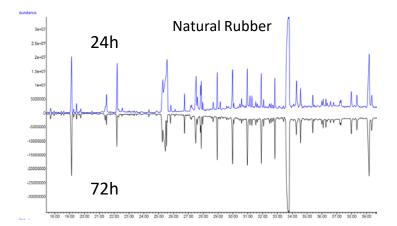
the driving force and the degree to which equilibrium is achieved

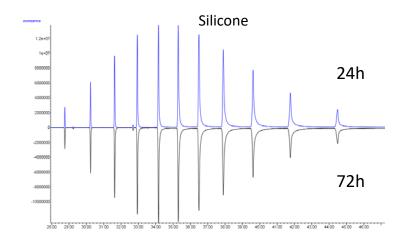
Time and temperature are closely linked to the extraction technique that is used

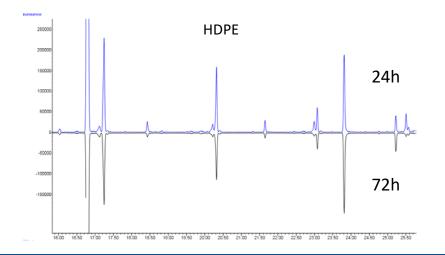
Extraction time and temperature

PDDA[®]

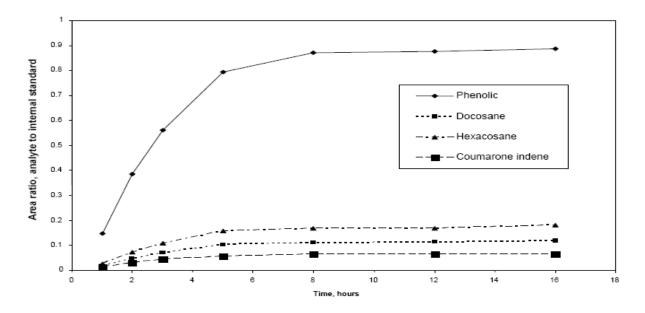
Typical temperature / time settings:


- Reflux with organic solvents:
 - o Boiling temperature, 8 h
- Soxhlet with organic solvents:
 - o Boiling temperature, 24 h
- Sonication:
 - Room temperature, ½ to 1h
- Sealed vessel and "in situ" extraction:
 - 50°C, 72 h (ISO 10993-12)
 - 24h below boiling point of extraction solvent = equivalent to 8h reflux
- Headspace enrichment:
 - 40 minutes, temperature is selected based on the type of material (from 70°C for LDPE up to 150° for rubbers / elastomeric material)
- Dynamic Extractions:
 - Extraction Conditions are determined based upon the conditions of use




Extraction time and temperature

Case study: impact of extraction time



Extraction time and temperature

Asymptotic extraction profile - exhaustive extractions:

PQRI-Example:

- Test article: sulphur cured elastomer
- Extraction: DCM soxhlet

CONCLUSION: Extraction conditions on the 'plateau'-regime (equilibrium)

= "MAXIMUM RISK"

Stoichiometry: physical mass/surface area to volume

Can be based on

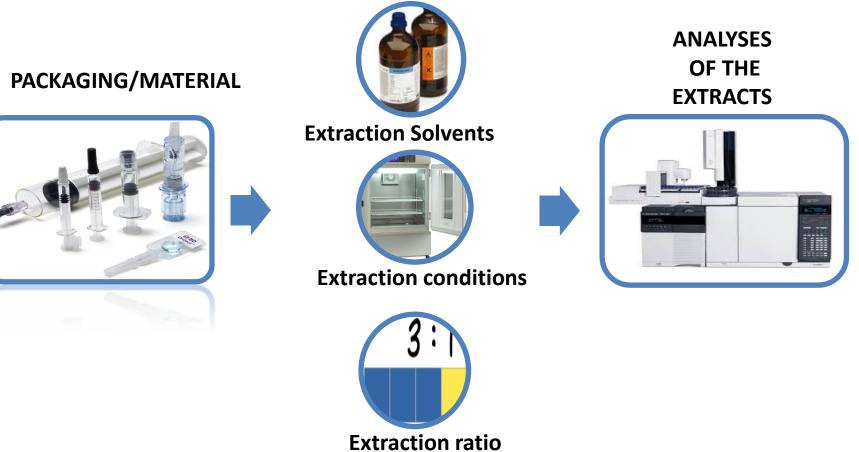
Known <u>chemical ingredients</u> in a component/material Safety based <u>thresholds</u> for DP leachables Known <u>sensitivities</u> of the <u>analytical instrumentation</u>

Stoichiometry can be manipulated to produce a more concentrated extract

REMARK: beware of solubility of extractables in extraction medium when "back extrapolating" to original ratio's! Physical state can be altered (cut, ground, altered in size...)

Extraction Stoichiometry

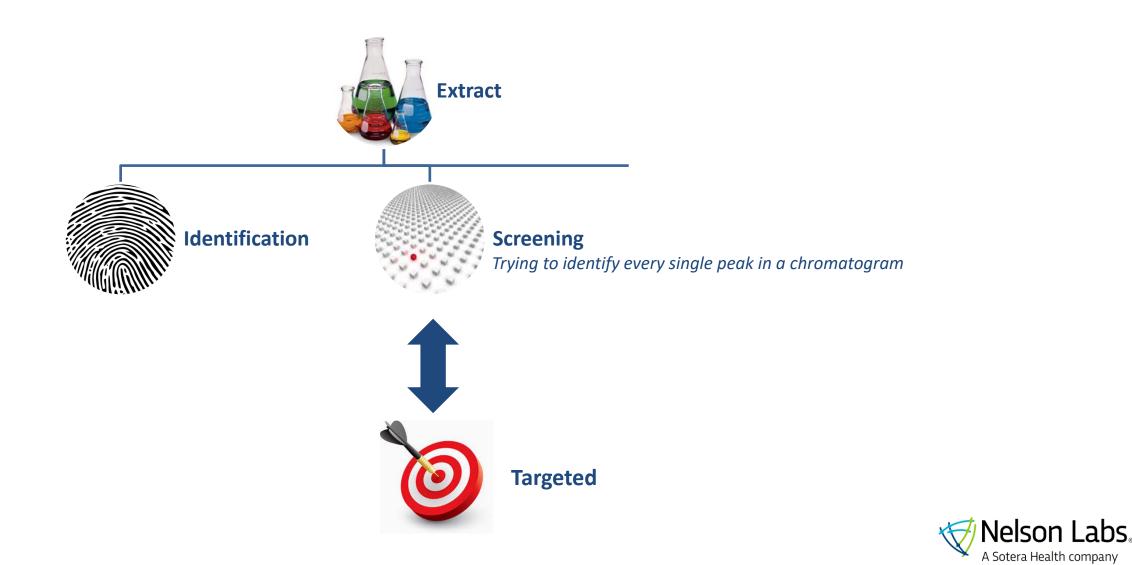
- Try to stay as close as possible to the ratio's of the actual use of the container
 - o E.g. A rubber plunger for a 10 mL PFS could be extracted at a ratio of 1 plunger per 10 mL of solvent
- For raw materials, a reasonable, broadly accepted ratio is 1g/10mL
- For certain container closure systems (e.g. LVP), the final AET levels that may need to be considered may have an impact on the extraction ratio's!


Example

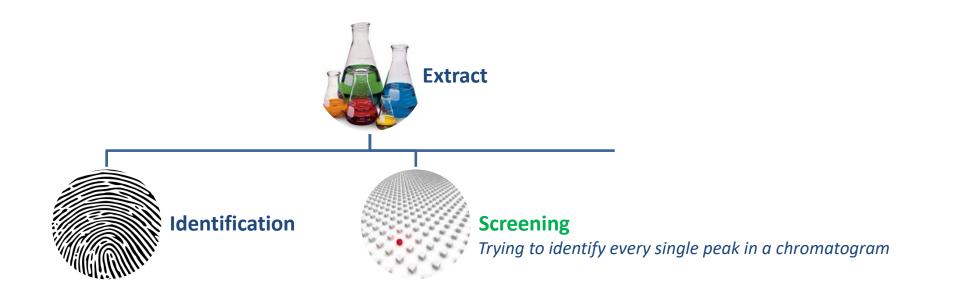
- $\circ~$ For a 1 L bag (bag weighs 50g), Final AET in DP is at 1.5 $\mu g/L$
- ο This means that for the extraction study, 1.5µg/Bag(50g) or 30µg/g needs to be attained
- With a ratio of 1bag in 1L, this AET cannot be attained
- Higher material-to-solvent ratios will need to be considered

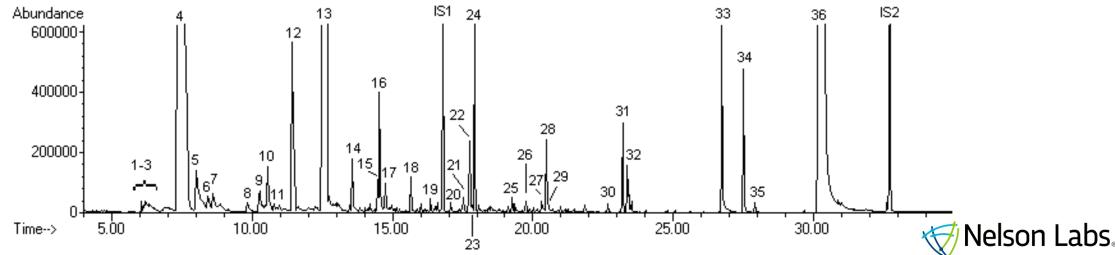
What **CAN** come out of the material?

IDENTIFICATION IDENTIFICATION IDENTIFICATION IDENTIFICATION IDENTIFICATION IDENTIFICATION IDENTIFICATION IDENTIFICATION IDENTIFICATION IDENTIFICATION



A **broad identification** in "First Pass" extractable studies requires:


- 1. A compound specific detector: **Mass Spectrometry**
- 2. A database to allow Identification based upon Mass Spectra
 - Commercial Databases for GC/MS: NIST, WILEY
 - Customized Databases



IDENTIFICATION

A Sotera Health company

COMPOUND SCREENER DATABASE: HOW DOES IT WORK?

IC

Identified Compound (confirmed identification)

- Analytical Standard Available
- MS and RT confirmed: 100%

IC

MPC

Identified Compound (confirmed identification)

- Analytical Standard Available
- MS and RT confirmed: 100%

Most Probable Compound

- Analytical Standard NOT available
- Excellent fit with MS-library (>80%)

IC

Identified Compound (confirmed identification)

- Analytical Standard Available
- MS and RT confirmed: 100%

Most Probable Compound

- Analytical Standard NOT available
- Excellent fit with MS-library (>80%)

TIC

MPC

Tentitavely Identified Compound

- Analytical Standard NOT available
- Lower fit with MS-library: only limited structural information/ molecular formula

IC

Identified Compound (confirmed identification)

- Analytical Standard Available
- MS and RT confirmed: 100%

Most Probable Compound

- Analytical Standard NOT available
- Excellent fit with MS-library (>80%)

TIC

MPC

Tentitavely Identified Compound

- Analytical Standard NOT available
- Lower fit with MS-library: only limited structural information/ molecular formula

Identified Compound (confirmed identification)

Analytical Standard Available

Nelson Labs proprietary DB MS and RT confirmed: 100%

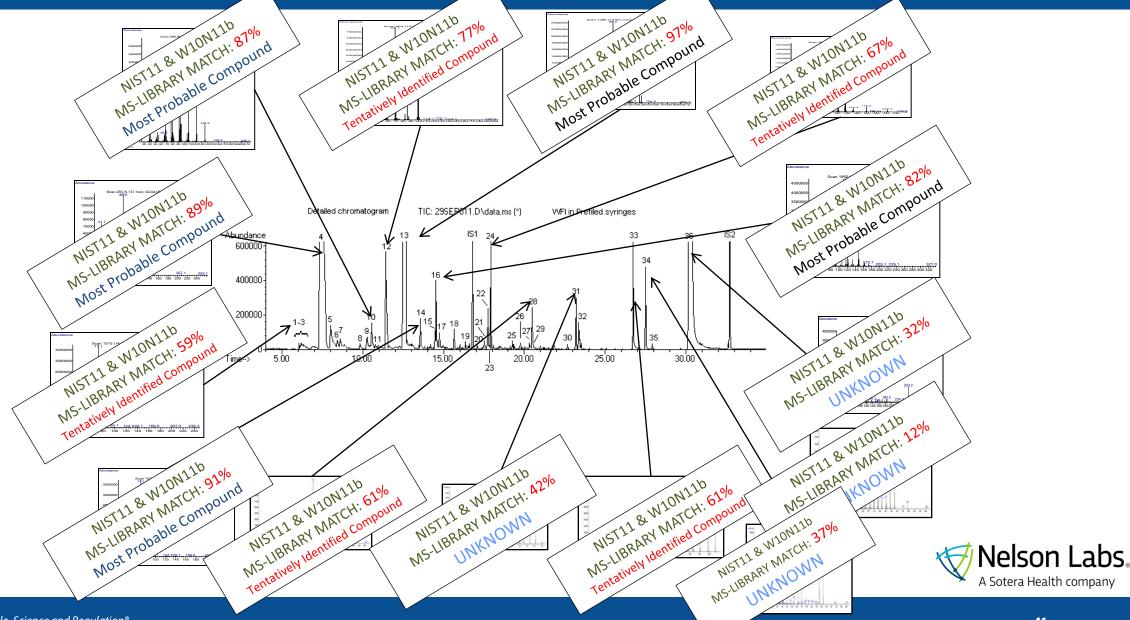
MPC

Most Probable Compound

- Analytical Standard NOT available
- Excellent fit with MS-library (>80%)

TIC

Tentitavely Identified Compound


- Analytical Standard NOT available
- Lower fit with MS-library: only limited structural information/ molecular formula

Commercial EI databases

Nelson Labs proprietary screener database: HOW_DOES IT WORK?

Nelson Labs proprietary screener database: HOW DOES IT WORK? Compound Screener database Compound Screener database Compound Screener database Compound Screener database R.T. and M.S. MATCH: R.T. and M.S. MATCH: R.T. and M.S. MATCH: R.T. and M.S. MATCH: 100% CONFIDENCE 100% CONFIDENCE IDENTIFIED COMPOUND 100% CONFIDENCE IDENTIFIED COMPOUND IDENTIFIED COMPOUND 100% CONFIDENCE IDENTIFIED COMPOUND Compound Screener database Compound Screener database R.T. and M.S. MATCH: 100% CONFIDENCE IDENTIFIED COMPOUND 100% CONFIDENCE

IS1

19 ₂₀

12

10

10.00

14

15.00

Compound Screener database R.T. and M.S. MATCH. 100% CONFIDENCE IDENTIFIED COMPOUND 20,00 25,00 23 MS-LIBRARY MATCH: 32% Compound Screener database NIS-LIBRARY MATCH: 42% R.T. and M.S. MATCH: 100% CONFIDENCE IDENTIFIED COMPOUND NIS-LIBRARY MATCH: 12% Nelson Labs A Sotera Health company

34

35

30

IDENTIFIED COMPOUND

Compound Screener database

100% CONFIDENCE

IDENTIFIED COMPOUND

Compound Screener database

100% CONFIDENCE

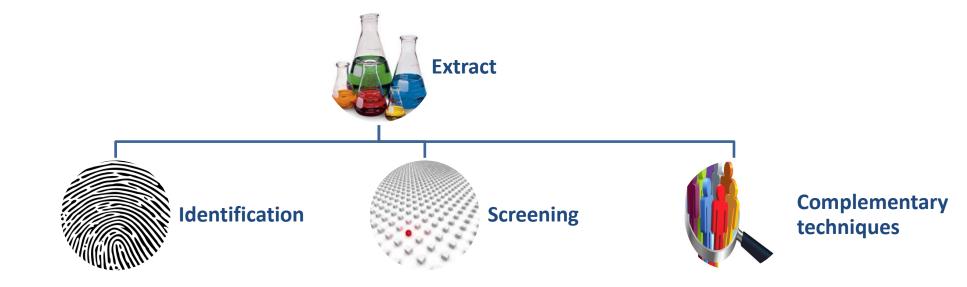
IDENTIFIED COMPOUND

600000

400000

00000

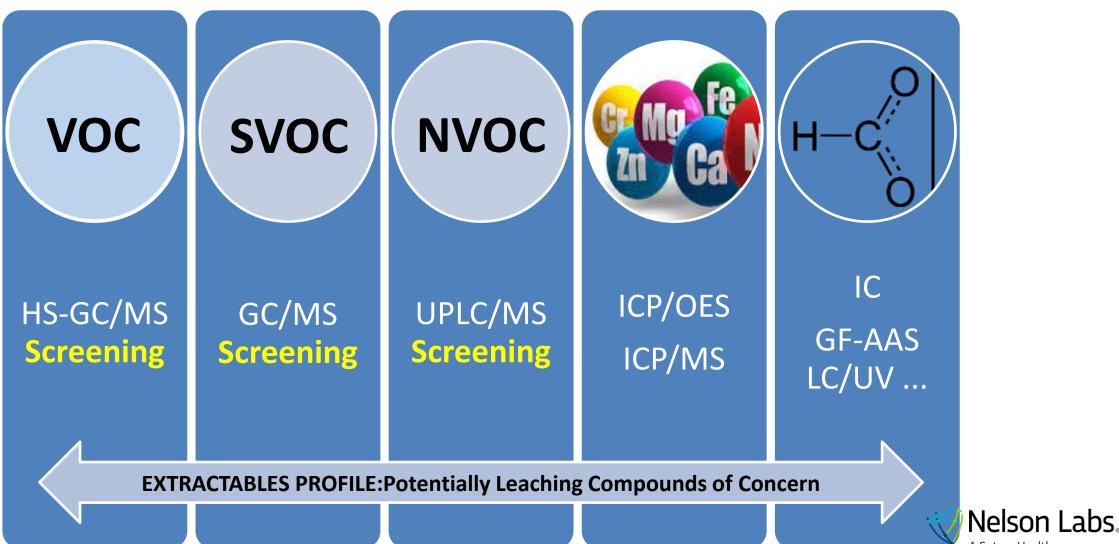
1-3


MS-LIBRARY MATCH: 61%

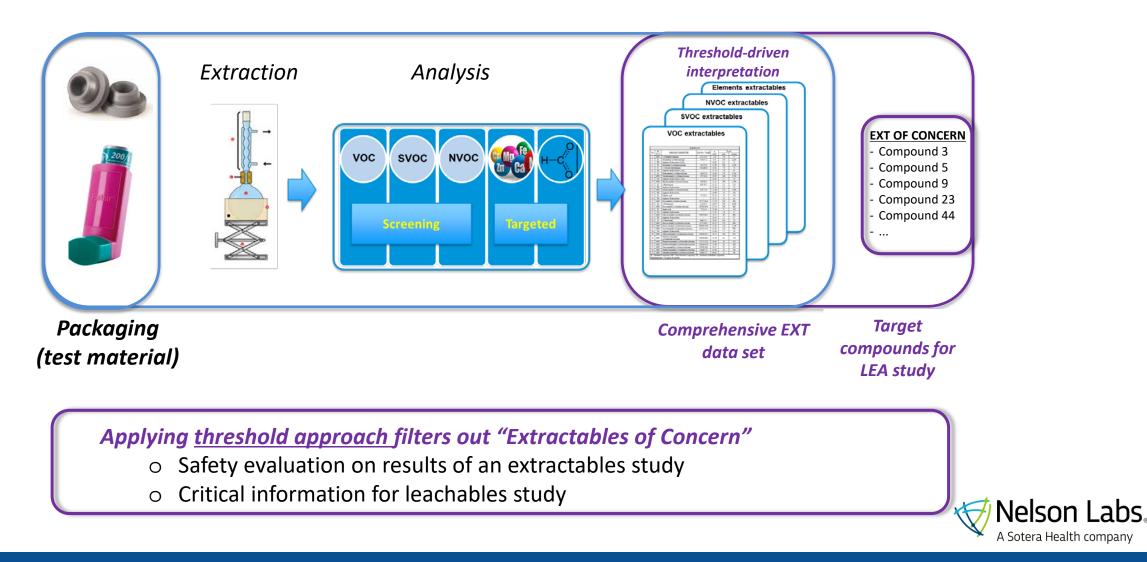
Tentatively identified Compound

5.ÒO

Analyses of the extracts



Analyses of the extracts



A Sotera Health company

Summary - Bridging E&L

TYPICAL EXTRACTABLES STUDY

SAFETY CONCERN THRESHOLD (SCT)

"Threshold below which a leachable would have a dose so low as to present <u>negligible **safety** concerns</u> from carcinogenic and non-carcinogenic toxic effects"

PQRI (Product Quality Research Institute)

- SCT in function of toxicological endpoints
- Additional cancer risk of 1 in 1.000.000 over life-time exposure (0.15 μg/day)
- SCT dependent on the **administration route** of the final product:
 - OINDPs (Orally Inhaled and Nasal Drug Products)
 - o PDPs: Parenteral Drug Products
 - o ODPs: Ophthalmic Drug Products
 - Oral and Topical/Transdermal products

The threshold approach – organic compounds

SAFETY CONCERN THRESHOLD (SCT)

Orally Inhaled and Nasal Drug Products (OINDPs):

 PQRI "Safety Thresholds and Best Practices for Extractables and Leachables in Orally Inhaled Drug Products" (SEP 2006).

Compound class details	Suggested threshold level
Qualifcation Threshold (QT): Threshold below which a given leachable is not considered for safety qualification unless the leachable presents structure- activity relationship (SAR) concerns	5 μg/day
Safety Concern Threshold (SCT): Threshold below which a leachable would have a dose so low as to present negligible safety concerns from carcinogenic and noncarcinogenic toxic effects	0.15 μg/day

The threshold approach – organic compounds

SAFETY CONCERN THRESHOLD (SCT)

Parenteral Drug Products (PDPs): (to be published)

 Presentation Dennis Jenke "The PODP Best Demonstrated Practice Recommendations – Chemistry and Toxicology, April 2016, Venice, PDA-Europe Extractables and Leachables Workshop."

Tox endpoint	General tox.	Sensitizer & irritant	Carcinogen
Class	Class I	Class II	Class III
Threshold level (µg/day)	50?	5	1.5 (PDP-SCT)

Ophthalmic Drug Products (ODPs): (to be published) concentration based threshold levels

Oral and Topical/transdermal products: no threshold level available yet

The threshold approach – organic compounds

<u>T</u>HRESHOLD OF <u>T</u>OXICOLOGICAL <u>C</u>ONCERN (TTC)

"Threshold of Toxicological Concern (TTC) concept was developed to define an acceptable intake for any unstudied chemical that poses a <u>negligible risk of</u> <u>carcinogenicity or other toxic effects</u>"

ICH M7 guideline

- TTC in function of therapy duration
- Evaluation of genotoxic impurities
- Additional cancer risk of 1 in 100.000 over life-time exposure

Duration of treatment	≤ 1 month	> 1-12 months	> 1-10 years	> 10 years
Daily intake (µg/day)	120	20	10	1.5

THE THRESHOLD APPROACH – ELEMENTS

PERMITTED DAILY EXPOSURE (PDE)

ICH Q3D guideline

- Lists PDE in function of administration route
- Limited list of elements (e.g. typical glass elements or rubber elements are no included)

Element	Class ²	Oral PDE	Parenteral PDE,	Inhalation PDE,
		µg∕day	μg/day	μg/day
Cd	1	5	2	2
Pb	1	5	5	5
As	1	15	15	2
Hg	1	30	3	1
Co	2A	50	5	3
V	2A	100	10	1
Ni	2A	200	20	5
T1	2B	8	8	8
Au	2B	100	100	1
Pd	2B	100	10	1
Ir	2B	100	10	1
Os	2B	100	10	1
Rh	2B	100	10	1
Ru	2B	100	10	1
Se	2B	150	80	130
Ag	2B	150	10	7
Pt	2B	100	10	1
Li	3	550	250	25
Sb	3	1200	90	20
Ba	3	1400	700	300
Мо	3	3000	1500	10
Cu	3	3000	300	30
Sn	3	6000	600	60
Cr	3	11000	1100	3

The threshold approach – AET

<u>ANALYTICAL EVALUATION THRESHOLD</u> (AET)

➔ Translating the SCT into Analytical Thresholds for Extractables studies

OINDPs:	<u>PDPs:</u>
Δ FT — 0.15 μg/day	ΛΕΤ — 1.5 μg/day
maximum administered volume/day	ALT – maximum administered volume/day

➔ Screening methods are semi-quantitative: correction factor of 50%

Final AET
$$=$$
 $\frac{AET}{2}$

Cornerstone of all E&L testing:

Compounds detected below the (Final) AET should not be considered for toxicological assessment

Fast Initial Toxicity (FIT) screening evaluation?

Derek Nexus software (Lhasa Ltd):

- Compounds submitted to a rule based <u>Structure Activity Relationship</u> (SAR) assessment
- Several 'toxicological end points', 'likelyhood levels' and 'negative predictions' are used

Endpoints included		
Carcinogenicity	Cerebral oedema	Respiratory sensitization
Photocarcinogenicity	Chloracne	Occupational asthma
Chromosome damage in vitro	Cumulative effect on white cell count and immunology	Skin sensitization
Chromosome damage in vivo	Cyanide-type effects	photoallergenicity
photo-induced chromosome damage <i>in vitro</i>	High acute toxicity	Thyroid toxicity
Genotoxicity in vitro	Methaemoglobinaemia	Rapid prototype: bradycardia
Genotoxicity in vivo	Neurotoxicity	Rapid prototype: nephrotoxicity
Photogenotoxicity in vitro	Ocular toxicity	Rapid prototype: hepatoxicity
Photogenotoxicity in vivo	Oestrogenicity	Rapid prototype: kidney disorders
Hepatotoxicity	Peroxisome proliferation	Rapid prototype: mitochondria dysfunction
hERG channel inhibition in vitro	Phospholipidosis	Rapid prototype: bladder disorders
Irritation (of the eye)	Phototoxicity	Rapid prototype: blood in urine
Irritation (of the gastrointestinal tract)	Pulmonary toxicity	Rapid prototype: thyroid toxicity
Irritation (of the respiratory tract)	Nephrotoxicity	Rapid prototype: splenotoxicity
Irritation (of the skin)	Uncoupler of oxidative phosphorylation	Rapid prototype: bone marrow toxicity
Lachrymation	Mutagenicity in vitro	Rapid prototype: adrenal gland toxicity
Alpha-2-mu-Globulin nephropathy	Mutagenicity in vivo	Rapid prototype: cardiotoxicity
Anaphylaxis	Photomutagenicity	Rapid prototype: chromosome damage in vitro
Cholinesterase inhibition	Developmental toxicity	Rapid prototype: testicular toxicity
Bladder urothelial hyperplasia	Teratogenicity	-
Cardiotoxicity	Testicular toxicity	-

Likelihood	Explanation	
Certain		
Probable	= Endpoint is considered for classification	
Plausible (baseline)		
Equivocal		
Doubted	The weight of evidence opposes the proposition.	
Improbable	There is at least one strong argument that the proposition is false and there are no arguments that it is true.	
Impossible	There is proof that the proposition is false.	
Open	There is no evidence that supports or opposes the proposition.	
Contradicted	There is proof that the proposition is both true and false.	

Prediction	Explanation
Inactive prediction	The query structure does not match any structural alert for bacterial <i>in vitro</i> mutagenicity in Derek. Additionally, the query structure does not contain any unclassified or misclassified features.
Inactive prediction with misclassified features	Features of the query structure were found in the Lhasa Ames test reference set and have been observed in mutagens that do not match bacterial <i>in vitro</i> mutagenicity structural alerts in Derek. The relationship between these features and mutagenic activity may be coincidental or contributory.
Inactive prediction with unclassified features	The query structure contains features that were not found in the Lhasa Ames test reference set and do not match any structural alerts for bacterial <i>in vitro</i> mutagenicity in Derek.

Example of a Derek assessment for 'compound X'

Derek predictions (Reasoning summary and alerts found):

- alpha-2-mu-Globulin nephropathy in bacterium is IMPOSSIBLE
- alpha-2-mu-Globulin nephropathy in human is IMPOSSIBLE
- · alpha-2-mu-Globulin nephropathy in mammal is DOUBTED
- Carcinogenicity in bacterium is IMPOSSIBLE; Glycidyl ether, amine, ester or amide
- Carcinogenicity in human is PLAUSIBLE; Glycidyl ether, amine, ester or amide
- · Carcinogenicity in mammal is PLAUSIBLE; Glycidyl ether, amine, ester or amide

Toxicological

- endpoint
- •

Likelyhood

level

- Chromosome damage in vitro in bacterium is IMPOSSIBLE; Glycidyl ether, amine, ester or amide
- Chromosome damage in vitro in human is PLAUSIBLE; Glycidyl ether, amine, ester or amide
- Chromosome damage in vitro in mammal is PLAUSIBLE; Glycidyl ether, amine, ester or amide
- Developmental toxicity in bacterium is IMPOSSIBLE; Epoxide
- Developmental toxicity in human is PLAUSIBLE; Epoxide
- Developmental toxicity in mammal is PLAUSIBLE; Epoxide
- Irritation (of the eye) in bacterium is IMPOSSIBLE; Epoxide
- Irritation (of the eye) in human is PLAUSIBLE; Epoxide
- Irritation (of the eye) in mammal is PLAUSIBLE; Epoxide
- Irritation (of the skin) in bacterium is IMPOSSIBLE; Epoxide
- Irritation (of the skin) in human is PLAUSIBLE; Epoxide
- Irritation (of the skin) in mammal is PLAUSIBLE; Epoxide
- · Mutagenicity in vitro in bacterium is PLAUSIBLE; Glycidyl ether, amine, ester or amide
- Nephrotoxicity in bacterium is IMPOSSIBLE; 1,2-Ethyleneglycol or derivative
- Nephrotoxicity in human is EQUIVOCAL; 1,2-Ethyleneglycol or derivative
- Nephrotoxicity in mammal is EQUIVOCAL; 1,2-Ethyleneglycol or derivative
- Skin sensitisation in bacterium is IMPOSSIBLE; Glycidyl ether, amine, ester or amide
- Skin sensitisation in human is PLAUSIBLE; Glycidyl ether, amine, ester or amide
- Skin sensitisation in mammal is PLAUSIBLE; Glycidyl ether, amine, ester or amide

Compounds are divided in classes based on their Derek assessment:

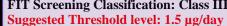
• <u>OINDPs</u>

- PQRI (Product Quality Research Institute) document: Safety Thresholds and Best Practices for Extractables and Leachables in Orally Inhaled and Nasal Drug Products, September 2006.

COMPOUND CLASS	COMPOUND CLASS DETAILS	SUGGESTED THRESHOLD LEVEL
Class I	No DEREK Alert: for following toxicological endpoints or DEREK Alert with a likelihood of "doubted", "improbable" or "impossible": Carcinogenicity – Genotoxicity – Mutagenicity – Chromosome damage - Irritation – Sensitization – Teratogenicity – Lachrymation – Chloracne - Photoallergenicity	5 μg/day (Qualification Threshold = QT)
Class II	DEREK Alert: Irritation – Sensitization – Teratogenicity – Lachrymation – Chloracne – Photoallergenicity	0.15 μg/day (Safety Concern
Class III	DEREK Alert: for following toxicological endpoints with a likelihood of ,,equivocal" or higher: Carcinogenicity – Genotoxicity – Mutagenicity – Chromosome damage	Threshold = SCT)

PDPs

- Presentation Dennis Jenke: "The PODP Best Demonstrated Practice Recommendations – Chemistry and Toxicology, April 2016, Venice, PDA-Europe Extractables and Leachables Workshop.


COMPOUND CLASS	COMPOUND CLASS DETAILS	SUGGESTED THRESHOLD LEVEL
Class I	No DEREK alerts are generated for the following toxicological end points: Sensitization – Irritation – Genotoxicity – Mutagenicity – Carcinogenicity – Teratogenicity	50 µg/day
Class II	DEREK Alert: Irritation – Sensitization – Teratogenicity – Lachrymation – Chloracne – Photoallergenicity	5 μg/day
Class III	DEREK Alert: Carcinogenicity – Genotoxicity – Mutagenicity – Chromosome damage	1.5 μg/day

Example of a FIT screening result for 'compound X' in a parenteral application

Compound X		Structure
[ToxID] C ₃₉ H ₄₆ O ₈ FIT Screening Evaluation:	642.79	
 Chromosome damage in vitro in Chromosome damage in vitro in Developmental toxicity in bacter Developmental toxicity in human Developmental toxicity in mamm Irritation (of the eye) in bacterium Irritation (of the eye) in human in Irritation (of the eye) in mamman Irritation (of the skin) in bacterium Irritation (of the skin) in mamman Mutagenicity in vitro in bacterium Nephrotoxicity in bacterium is EQU Nephrotoxicity in mammal is EQU Skin sensitisation in bacterium is Skin sensitisation in mammal is 	ummary and alerts by in bacterium is IMP by in human is IMPOS by in mammal is DOU IMPOSSIBLE; Glycidyl AUSIBLE; Glycidyl bacterium is IMPOSS human is PLAUSIBLE mammal is PLAUSIBLE is PLAUSIBLE; Epo nal is PLAUSIBLE; Epo m is IMPOSSIBLE; Epo m is IMPOSSIBLE; Epo m is PLAUSIBLE; Epo al is PLAUSIBLE; Epo al is PLAUSIBLE; Epo m is PLAUSIBLE; Epo al is PLAUSIBLE; Epo al is PLAUSIBLE; Co MPOSSIBLE; 1,2-Eth JIVOCAL; 1,2-Ethyle QUIVOCAL; 1,2-Ethyle QUIVOCAL; 1,2-Ethyle AUSIBLE; Glycidyl PLAUSIBLE; Glycid	POSSIBLE SSIBLE JBTED dyl ether, amine, ester or amide tther, amine, ester or amide l ether, amine, ester or amide SIBLE; Glycidyl ether, amine, ester or amide EL; Glycidyl ether, amine, ester or amide cy Epoxide Epoxide Epoxide Epoxide kide lycidyl ether, amine, ester or amide hyleneglycol or derivative eneglycol or derivative cidyl ether, amine, ester or amide ether, amine, ester or amide
FIT Screening Classification: C	lass III	

Summary - Bridging E&L

ID	Class	Threshold for Class (µg/day)	Final AET for Class (µg/L)	Extractables study Result (μg/L)
COMPOUND #1	Class I	50	12500	> 100
COMPOUND #2	Class I	50	12500	> 200
COMPOUND #3	Class III	1.5	375	< 1300
COMPOUND #4	Class I	50	12500	> 2000
COMPOUND #5	Class II	5	1250	> 400
COMPOUND #6	Class I	50	12500	> 250
COMPOUND #7	Class II	5	1250	< 13000
COMPOUND #8	Class III	1.5	375	> 100
COMPOUND #9	Class I	50	12500	47000
COMPOUND #10	Class II	5	1250	> 400
COMPOUND #11	Class III	1.5	375	> 100
COMPOUND #12	Class I	50	12500	> 5500
COMPOUND #13	Class III	1.5	375	< 33000
COMPOUND #14	Class I	50	12500	> 1200
COMPOUND #15	Class II	5	1250	< 3500
COMPOUND #15	Class II	5	1250	< 3500

- 1. Extractables study:
 - Compounds + concentration

2. FIT screening evalution:

• Subdivide compound in classes with corresponding threshold

3. Convert threshold to final AET:

- using max. daily dose and extraction ratio
- 4. Evaluate EXT results vs. Final AET per compound
- 5. Targets requiring further following up during leachables study

Questions?

Dr. Dries Cardoen, E&L Expert - Nelson Labs Europe e-mail: <u>dcardoen@nelsonlabs.com</u> Tel: +32 16 40 04 84

