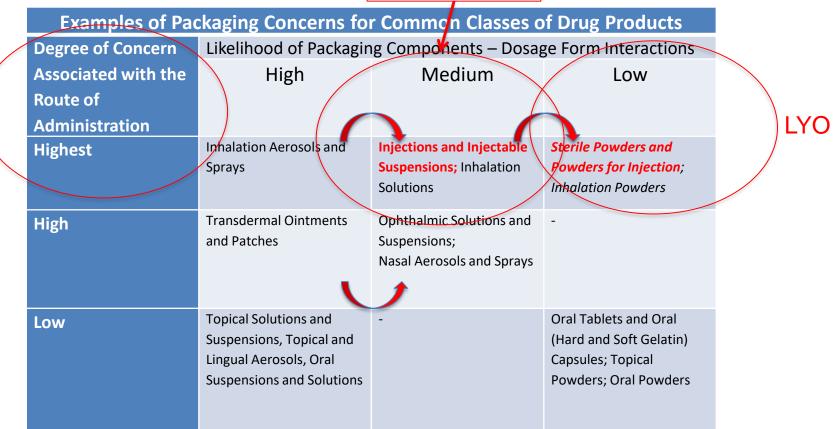


PDA VIRTUAL TRAINING COURSE EXTRACTABLES – LEACHABLES

EXTRACTABLES & LEACHABLE CONSIDERATIONS FOR SMALL VOLUME PARENTERAL APPLICATIONS

Trainer: Dr. Piet Christiaens, Nelson Labs Europe

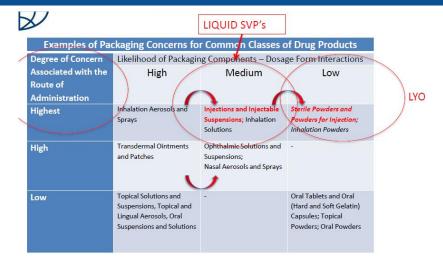
- 1. Regulatory Expectations for SVP Brief Recap
- 2. Rubbers an Introduction
- 3. Rubber *Oligomers* Toxicity & Reactivity
- 4. Glass & Glass related Issues
- 5. Other Materials used in Small Volume Parenteral C/C Manufacturing
- 6. Main SVP containers: E/L considerations
 - Vials Lyo vials
 - Prefilled syringes
 - Cartridges



1. Regulatory Expectations for Small Volume Parenterals – Brief Recap

1. Regulatory Expectations - US

LIQUID SVP's



Revision of "Table 1" in USP <1664>,

Originally Included into the FDA Guidance for Industry (1999): "Container/Closure systems for Packaging Human Drugs and Biologics"

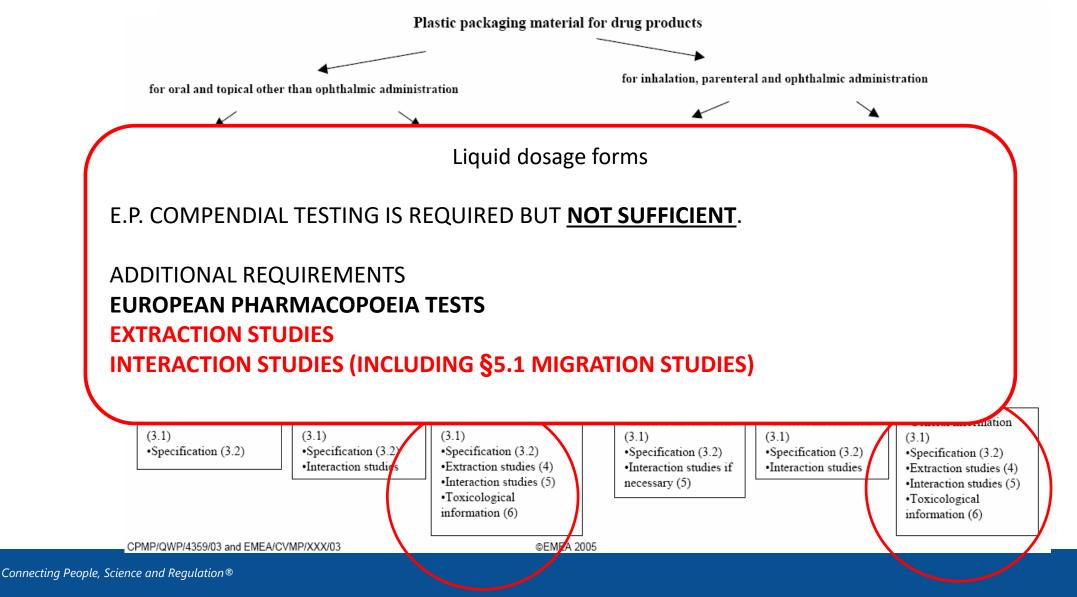
1. Regulatory Expectations - US

- Remark:
- 1. the "Medium" <u>Likelihood of Packaging DP Interaction</u> for Liquid SVP's is mainly based upon the observation that most Parenteral DP are Aqueous Based. For Non-aqueous based drug products: more caution is needed!
- 2. The "Low" <u>Likelihood of Packaging DP Interaction</u> for LYO SVP's is mainly based upon the observation that:
 - 1. the *interactio*n between a solid (Lyo cake) a material (eg rubber) *is limited*
 - 2. AND, there is *limited direct contact* between Lyo cake and Rubber closure
 - However the Mechanism of interaction for a LYO Cake and its MoC may not need always a direct contact.
 - BE CAREFUL when "rationalizing" a LYO application as being Non Critical!!!

1. Regulatory Expectations - US

Video of **Dan Mellon** (FDA - CDER)

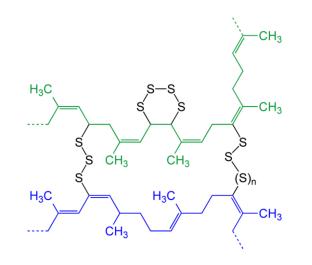
- 1. Identify Compounds above the Qualification Threshold (QT)
- 2. The use of Inappropriate Threshold Levels
- 3. Inadequate Sensitivity of the Detection Methods
- 4. Inadequate Stability Data to Examine Trends in Leachables
- 5. Inadequate toxicology justification to support a Permitted Daily Exposure (PDE)
- 6. Inadequate descriptions of how Extractables data were used to design Leachables assessments
- 7. Inadequate correlations between Extractables & Leachables



https://www.youtube.com/watch?v=mol_X2zQeig

1. Regulatory – EU – Plastic Immediate Packaging Materials (2005

• Going through the decision tree: liquid dosage forms – high requirements


Elastomeric closures **2. Rubbers – An introduction**

Supported by Datwyler

What is rubber?

An **elastic** material A **compounded** material

- Basis of a rubber \rightarrow polymer \rightarrow elastomer
- Elasticity via crosslinking (curing, vulcanising) the elastomer
- Additional ingredients to "tune" the rubber

2. Rubbers – an Introduction

Rubber = Compounded material of:

1. Elastomer

2. Filler

- 3. Cure system
- 4. Pigment
- 5. Other ingredients

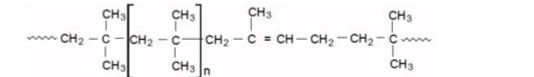
BASE COMPOSITION	PHYSICAL / CHEMICAL PROPERTIES	PRODUCT PERFORMANCE & APPLICATION

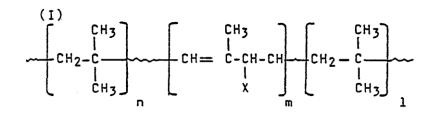
e.g.	e.g.	e.g.
Elastomer type	E&L profile	Drug compatibility
Additives	Hardness	Container Closure Integrity
Filler	Compression set	Gamma/Steam resistance
	Tensile strength	Fragmentation
		Gliding curve

2. Rubbers – an Introduction

Rubber = Compounded material of:

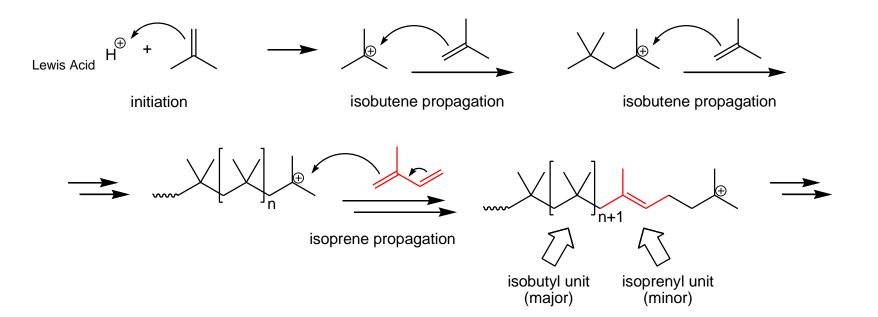
1. Elastomer


2. Filler


- 3. Cure system
- 4. Pigment
- 5. Other ingredients

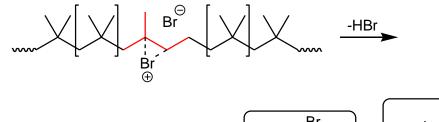
• Halobutyl (BromoButyl, ChloroButyl)

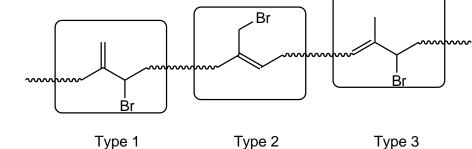
- Cleanest curing system
- Lowest permeability
- High resistance to ageing


Butyl

Halobutyl

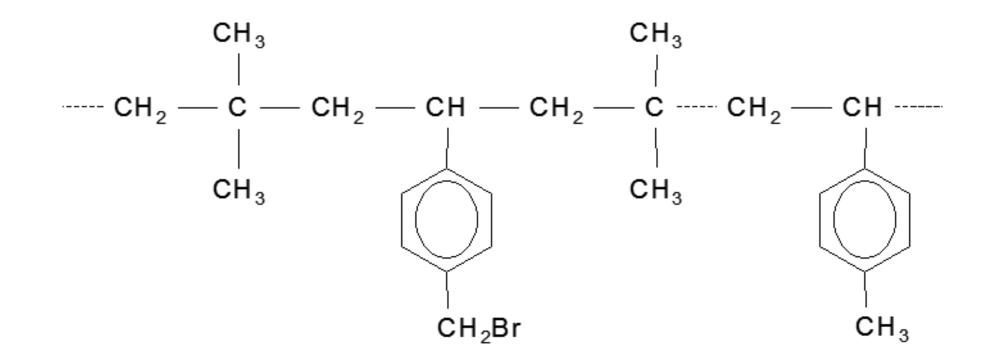
Butyl Elastomer (IIR): Cationic Polymerization


> Note: the Polymerization Starts with a Isobutene Unit (present in high excess!!)

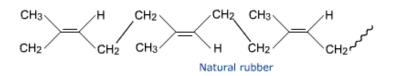

o 98 – 99 mol% is isobutylene

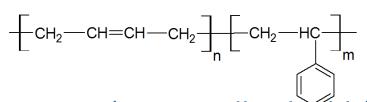
 \circ 1 – 2 mol% is isoprene

Bromination of a Butyl Elastomer (BIIR) $\sqrt{|\rangle}$ | $\sqrt{|}$ +Br₂



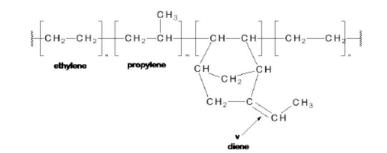
Bromination of the Backbone makes Elastomer (with a relatively Low N° of double bonds in backbone) more reactive in vulcanization/cross linking

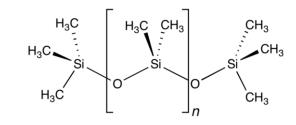


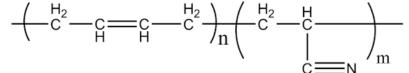

Regular **butyl** still on the market, and also newer types like **BIMS** (*Brominated isobutylene para-methylstyrene*)

Natural rubber / Polyisoprene

- Natural rubber: latex allergy discussions
- Historically the oldest elastomer type
- Need complex curing systems
- Good elastic properties
- Polyisoprene (synthetic) replaces Natural rubber
- SBR (styrene-butadiene rubber)
 - Intermediate permeability
 - Typically used for pre-assembled EtO sterilized components (e.g. Needle Shields)






• Nitrile rubber

- Typically used for mineral oil based drugs

- Silicone rubber
 - High permeability
 - Typically not used for parenteral applications
- **EPDM** rubber
 - For niche applications

Rubber = Compounded material of:

1. Elastomer

2. Filler

- 3. Cure system
- 4. Pigment
- 5. Other ingredients

2. Rubbers – an Introduction - FILLERS

PDDA[®] Parenteral Drug Association

- Fillers give mechanical strength (stiffness) to a rubber
- Attributes **physical properties** to a rubber compound
 - More filler = Harder compound
 → Better for gliding profile plungers
 → Worse for stopper piercing (coring!)
- Inorganic fillers ('white compounds')
 - Aluminum silicate (clay)
 - Magnesium silicate (talc)
 - Silicate
 - [Calcium carbonate]
- Carbon black ('black compounds')
 - Undesired for cleanliness reasons
 - May be associated with PNA's

Rubber = Compounded material of:

1. Elastomer

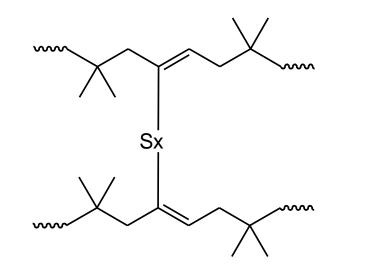
2. Filler

- 3. Cure system
- 4. Pigment
- 5. Other ingredients

2. Rubbers – an Introduction – CURE SYSTEMS

• Cure system:

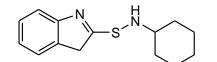
- Crosslinking agent
- Activator: gives the onset of vulcanization
- Accelerator: speeds up the vulcanization
 - Easily extractable organic molecules such as thiurams, sulfonamides, thiazoles, ...
- Modern cure systems
 - Aim at giving little extractables
- Historic cure systems
 - Use easily extractable organic accelerators



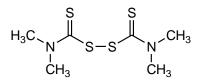
Crosslinked polymer chains

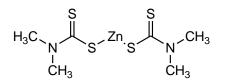
2. Rubbers – an Introduction – CURE SYSTEMS

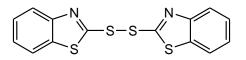
Rubber Curing / Vulcanization:

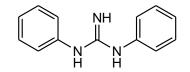


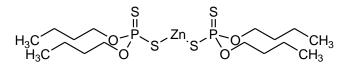
Rubber crosslinking requires S-Donors, activators, accelerators Activator: ZnO / Stearic acid


2. Rubbers – an Introduction – CURE SYSTEMS

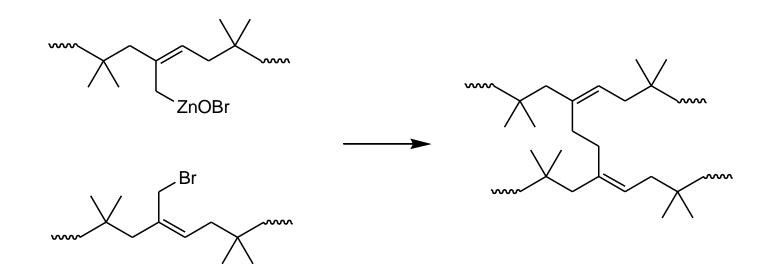

Rubber Curing - Accelerators:


Cyclohexyl benzothiazole sulfenamide

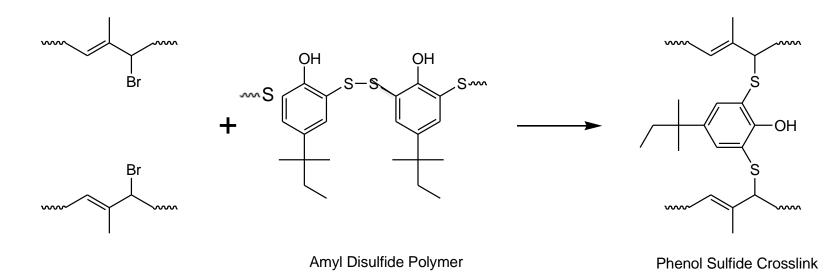

Tetramethylthiuram disulfide(TMTD)


Zinc dimethyldithiocarbamate

Mercaptobenzothiazole disulfide


Diphenyl guanidine

Zinc dibutylphosphorodithiate



ZnO as Cross-Linking Compound in Halobutyl-Rubbers:

Vultac Curing of (Halobutyl) Elastomers

Bromide: good leaving group!

Bond Energy C-H 413 J/mol ⇔ C-Br 209 J/mol

Explains Br⁻ release from bromobutyl rubbers

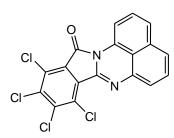
Rubber = Compounded material of:

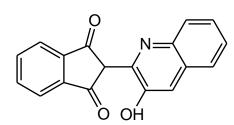
1. Elastomer

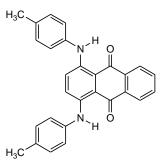
2. Filler

- 3. Cure system
- 4. Pigments
- 5. Other ingredients

2. Rubbers – an Introduction – **PIGMENTS**


PDA®


• Inorganic pigments


- Titanium dioxide
- Traces of carbon black
- Oxides of iron

• Organic pigments

Avoided in modern compounds

Solvent Red

Solvent yellow 114

Solvent Green 03

Rubber = Compounded material of:

1. Elastomer

2. Filler

- 3. Cure system
- 4. Pigment
- 5. Other ingredients

2. Rubbers – an Introduction – OTHER INGREDIENTS

Halobutyl polymer stabilizers

(to prevent dehydrohalogenation during processing)

- Calcium stearate
- Epoxydized soybean oil
- Anti-oxidants
 - Already present in halobutyl elastomer
 - Hindered phenol type anti-oxidants
 - Additionally added to improve environmental stability (ageing)
- Plasticizer, Waxes, Oil
- (introduce softness, anti-"coring")
 - High polymeric weight plasticizers, Paraffinic oil
 - To tune a formulation (e.g. reduce coring)
- Processing aids

THE COMPOSITION OF RUBBERS CAN BE VERY COMPLEX!!

RUBBER EXTRACTABLES: SUM OF

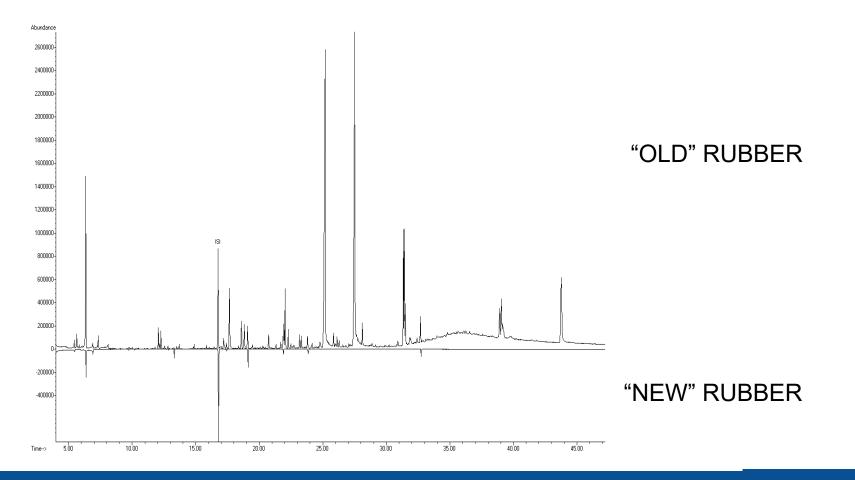
- 1. **INITIAL INGREDIENTS** OF THE RUBBER FORMULATION
- 2. **IMPURITIES** OF THESE INGREDIENTS

(e.g. Residual Solvents, **Oligomers in Elastomer**, Halides in Halobutyl Rubber...)

3. **REACTION/DEGRADATION PRODUCTS** DURING RUBBER PRODUCTION

In general too many ingredients should be avoided: negative impact on E-profile

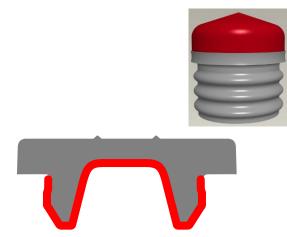
→ "what you don't put in, can't come out"

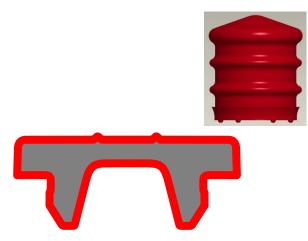

Number of Leachables from rubbers in SVPs is determined by:

- The Type of Rubber Formulation
- The Number of Ingredients in the Rubber
- **Type** of Ingredients (type of vulcanisation, type of AO, stabilizer....)
- Coated/Non-coated rubbers
- The composition of the Medicinal Product (MP)
- The **type of contact** between the rubber and the MP (*e.g. exposed surface area*)
- The Storage Temperature
- The Storage Time (Expiration Date)

2. Rubbers – an Introduction

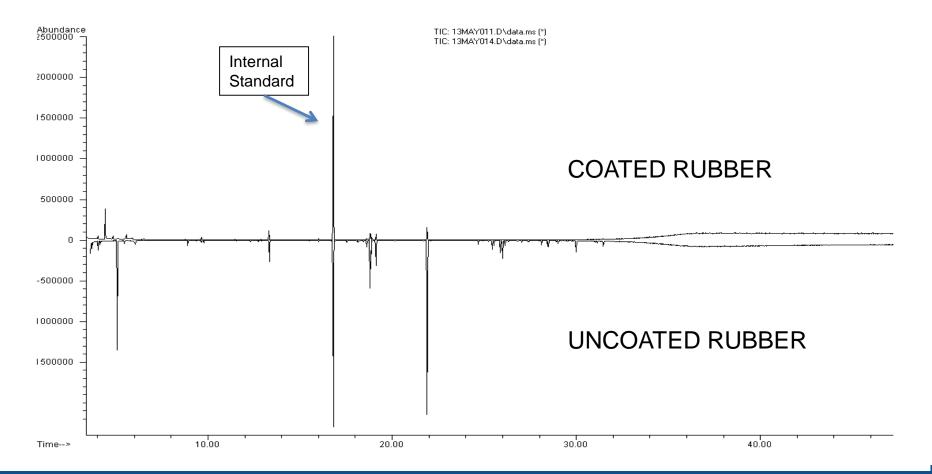
Difference in Extractable Results for an **OLD** vs **NEW** rubber (*IPA Extract; GC/MS analysis*)


2. Rubbers – an Introduction


COATED RUBBERS

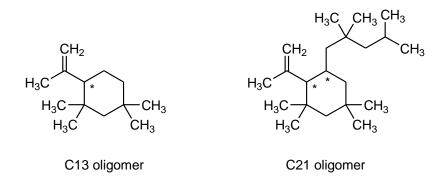
- Coated closures: significant improvement in E&L terms
- Key attribute: <u>barrier effect</u> from the fluoropolymer!
 - Simplified extractables profile
 - Improved compatibility with drugs/excipients

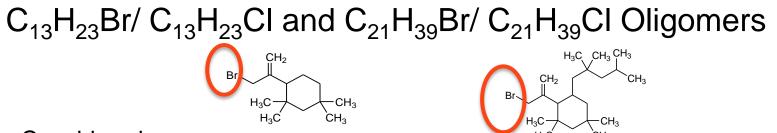
Film coating technology



Spray coating technology

Difference in Extractable Results for a **Coated vs Uncoated rubber**, for the same rubber grade (*IPA Extract; GC/MS analysis*)

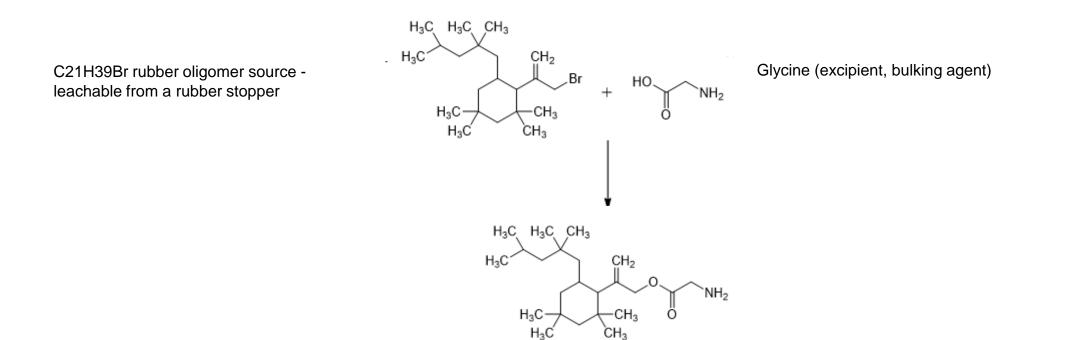



$C_{13}H_{24}$ and $C_{21}H_{40}$ Oligomers

- Formed both during the Polymerization and the rubber curing at high temperatures
- Considered as
 - Cyclic aliphatic hydrocarbon compounds
 - One double bond
- No experimental data / Literature data is known about toxicity of these compounds
- Structure Activity Relationship Assessment (SAR): compound of low tox. risk.

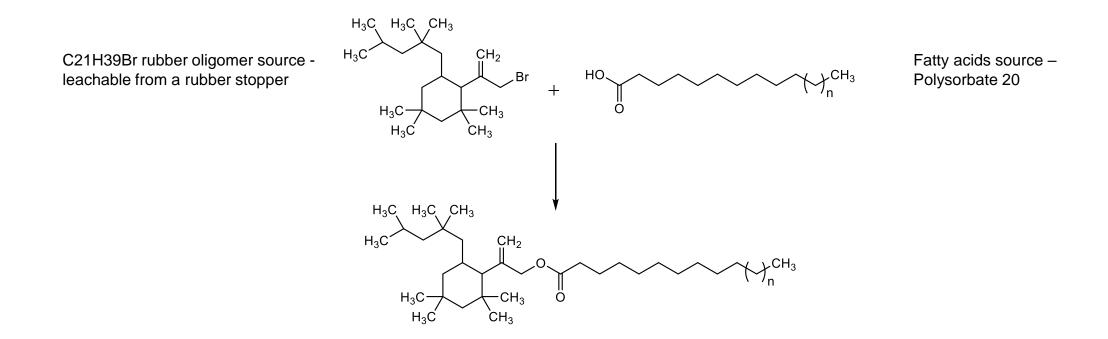
Halogenated Rubber Oligomers – Compounds of high concern

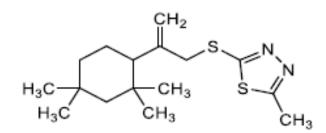
- Considered as
 - HALOGENATED Cyclic Aliphatic Hydrobarbon compounds (Allyl Halide)
 - Alkylating Agents
 - One double bond
- Structure Activity Relationship (SAR) Assessment:

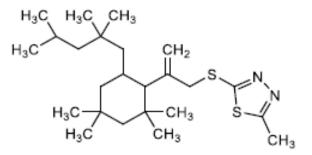

CARCINOGENICITY IN HUMANS IS PLAUSIBLE

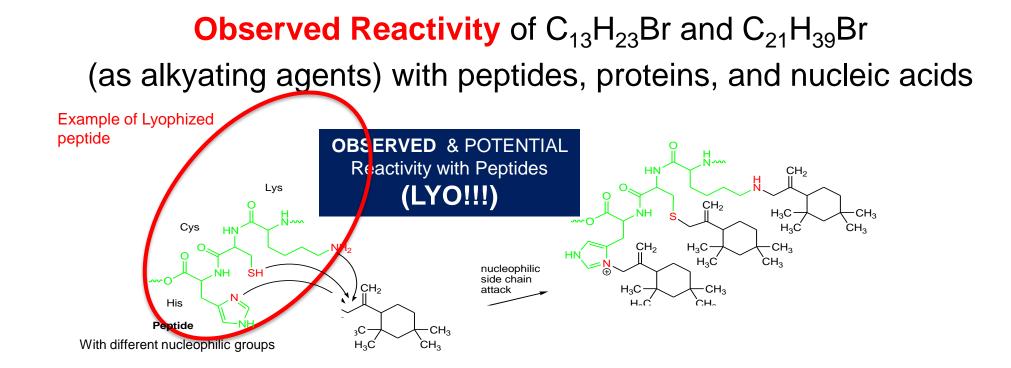
• As no experimental data / Literature data is known about the toxicity of these compounds, a lot of Pharma companies:

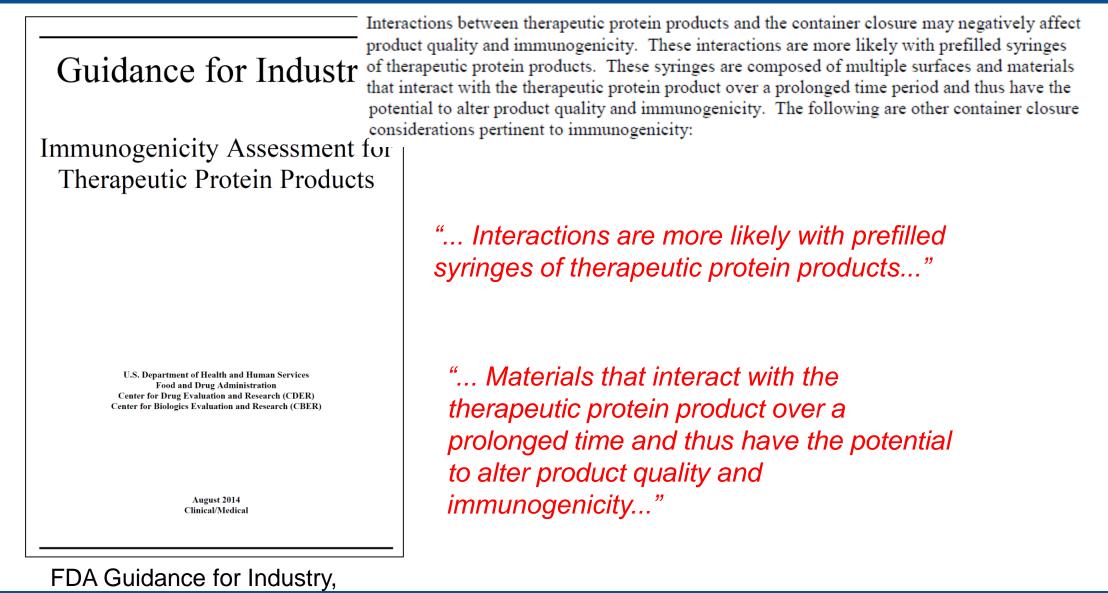
- <u>Rely on the result of a SAR assessment</u> to perform a tox evaluation
- Conclude that these compounds are of High Concern


Lyophilized Drug Product B in a glass vial with a rubber stopper (without coating): Excipients a.o.: Glycine


Lyophilized Drug Product A in a glass vial with a rubber stopper (without coating):

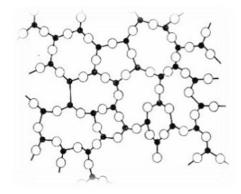

Excipients a.o.: Polysorbate 20


Adduct Formation of an API (Antibiotic) with the $C_{13}H_{23}Br$ and $C_{21}H_{39}Br$ oligomers



42

4. Glass & Glass Related Issues *Vials, Prefilled Syringes, Cartridges*



What is Glass?

An inorganic fused substance that has been cooled to a rigid condition without crystallization (e.g. Supercooled amorphous substance)

Why Glass as packaging material?

- Well-known material
- Transparent
- Heat resistant
- Good barrier properties: gas & vapour tight
- Chemically and physically (quite) inert.

J. Zuercher, ECA Course E/L, Prague 2010

Composition of Glass – Function of Ingredients

- SiO₂ : Backbone structure
- CaO : Increasing hardness & Chemical resistance
- Al₂O₃ : Increasing Chemical Resistance
- $Na_2O \& B_2O_3$: Lowering the melting point
- Fe_2O_3 , TiO_2 : Amber Glass
- CuO : Blue Glass
- Mn³⁺ : Violet Glass

J. Zuercher, ECA Course E/L, Prague 2010

Glass Types

Glass Type	General Description	Uses	
I	High resistant Borosilicate	Parenteral Preparations	
II	Treated Soda-Lime	Acidic and Neutral Parenteral Preparations	
111	Soda Lime	Not for Parenteral Preparations	
NP	Soda-Lime	Oral / Topical	

Glass Composition for different Glass Types:

Component	Type I (Borosilicate)	Type II, III, NP (Soda-Lime)	
SiO ₂	70 - 73%	69 - 73%	
B ₂ O ₃	10%	0 - 1%	
Na ₂ O	2 - 9%	13 - 14%	
Al ₂ O ₃	6 - 7%	2 - 4%	
BaO	0,1 - 2,0%	0 - 2%	
K ₂ O	1 - 2%	0 - 3%	
CaO	0,7 - 1,0%	5 - 7%	
MgO	0 - 0,5%	3 - 4%	
ZnO	0 - 0,5%	-	

Examples for Extractables / Leachables

- High heating during molding process leads to an increasing release of alkali ions from the glass surface => Delamination
- Heating promotes migration of alkali oxides within the silica matrix to the glass surface
- During the process, components of the heated glass vaporize and deposit on the surface

• Relevant for glass containers made from tubular glass

J. Zuercher, ECA Course E/L, Prague 2010

Parameters, impacting the Glass Leachables

- **Filling Volume**: *smaller filling volumes show higher leachable concentrations*
- **Storage time**: *leachable concentrations increase over time*
- **Sterilization / Sterilization time**: *longer autoclaving cycles, higher concentrations*
- **Sterilization Temperature**: *higher temperatures, higher concentrations*
- Type of contact solution:

[Si]: Lactic acid < acetic acid < ascorbic acid < malic acid < tartaric acid < oxalic acid < citric acid **Complexing agents**, such as EDTA may also impact the metal release from Glass

Impact of pH: higher pH, higher [Si] release.
 In general, more metals are leaching out of glass at pH>9

4. Glass and Related Glass Container issues

Risk of Glass Leachables

- Most observed Metal Leachables from Glass:
 Si and Na as MAJOR leachables, K, B, Ca & Al as MINOR LEA, Fe: traces
- Alkali release: pH shift of unbuffered solutions
- Silicon (Si) release: increased particle load, delamination!
- Aluminum release:

Aluminum can accumulate in patients with reduced renal function, causing e.g. neurological diseases

• Potential Arsenic (As) release:

glass can contain arsenic oxide (III) as a fining agent to improve glass tranparency. Arsenic is toxic!

• **Release of metals**, causing precipitation with some salts, present in the DP $Ba \Rightarrow BaSO_4$, $Al \Rightarrow Al(OH)_3$

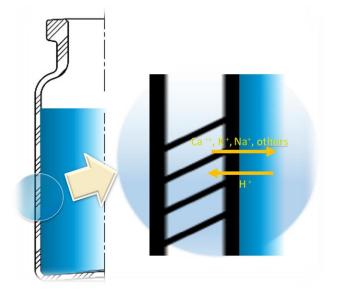
4. Glass and Related Glass Container issues

How to (try to) prevent Glass Leaching

1. Chemical surface treatment

(NH₄)₂SO₄ is injected before annealing

 $(NH_4)_2SO_4 \rightarrow (NH_4) HSO_4 + NH_3$

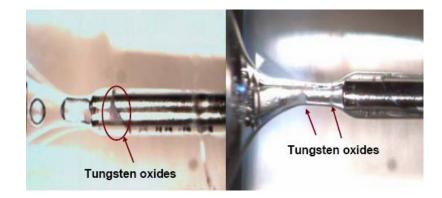

 $2Na^+ + (NH_4)HSO_4 \rightarrow Na_2SO_4 + NH_3 + 2H^+$

Afterwards, rinsing with Water to remove soluble NaSO₄ Result: lower pH shift because lower amounts of Na will leach

2. Coating on Glass (SiOx): Schott Type I plus

3. Siliconisation will reduce interaction between glass and DP

J. Zuercher, ECA Course E/L, Prague 2010


4. Glass and Related Glass Container issues

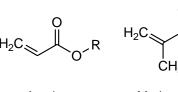
Glass as Barrel Material

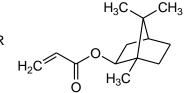
TUNGSTEN RESIDUES

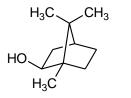
- <u>Tungsten pin</u> used in the production of glass pre-filled syringes to open the syringe hub (cavity where staked needle is glued in)
- Tungsten Oxide Residues are known to cause protein degradation (protein oxidation causing aggregation)

Glass as Barrel Material

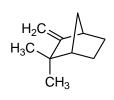
GLUE RESIDUES


- ➢ Glue is used to glue in the staked needle into the PFS-system
- > <u>Prolonged contact</u> with a drug product may release glue components
- Target compounds may depend upon the glue used (e.g. Loctite 3345, Loctite 3081, or other grades)



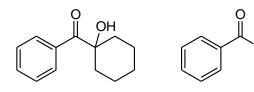

Glass as Barrel Material – Related Compounds

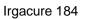
EXTRACTABLES RELATED TO GLASS BARRELS: GLUE RESIDUES


Base Polymer

Isoborneol

Acrylate


Methacrylate


Isobornyl acrylate

Н

Camphene

UV curing / activation

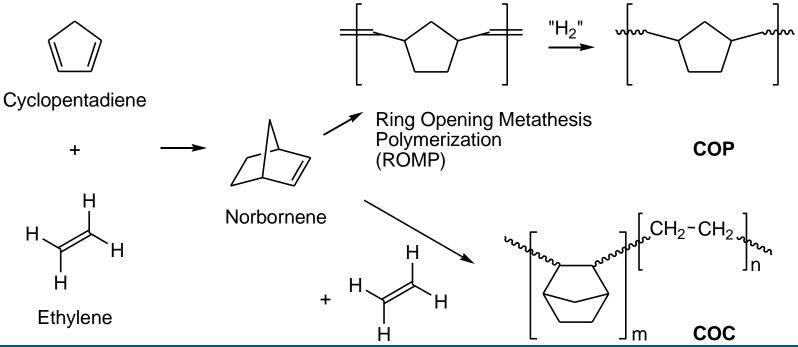
Benzaldehyde

Cyclohexanone

Glass as Barrel Material – Related Compounds

SILICONE OIL RESIDUES

- Glass surfaces are siliconized a.o. to reduce potential interactions with aqueous contact solutions
- > Hydrophobic surface / <u>reduced wettability</u>
- Reduced alkali release
- > Silicone oil remainders <u>become leachables</u>



5. Other Materials used in Small Volume Parenteral C/C Manufacturing

COP: <u>Cyclic Olefin Polymers</u> COC: <u>Cyclic O</u>lefin <u>C</u>opolymers

- Relatively Clean Materials
- High Tg, rigid materials
- However, low gas barrier (O₂) properties
- Risk for diffusion: potential (regulatory) risk for label migration

CRITICAL PARTS OF A POLYMER SYRINGE WRT E/L

PRIMARY PACKAGING (Direct Contact between DP and Material):

- The Barrel: COC, COP, PP
- The Piston: Rubber
- The Tip Cap: Rubber Same Concern as for Glass PFS
- The Needle

SECONDARY PACKAGING (No Direct Contact between DP and Material):

- The Needle Shield (should it be considered as primary or secondary?): Rubber
- The Label: Adhesive, Ink, other Label Components
- In some Cases: The Lacker
- In some Cases: The Packaging of the Syringe (Overwrap, Tubs,...)

Specific for Polymer PFS!

TYPICAL COMPOSITION OF COMMERCIAL POLYMERS,

- e.g. For Barrel Manufacture
- o Additives (BHT, Irganox 1010, Stearates, Pigments, Clarifyers...)
- o Residues (Monomers, Solvent Residues, Processing Residues..)
- Oligomers (Mainly for PP)
- Potential Degradation Compounds from Polymers
 - Organic Acids, Aldehydes, Ketones, Alcohols, Chain Scission Fragments...

Ο

Regulatory Requirements for Secondary Packaging

FDA guidance document: 'Container Closure systems for Packaging Human Drugs and Biologics', 1999:

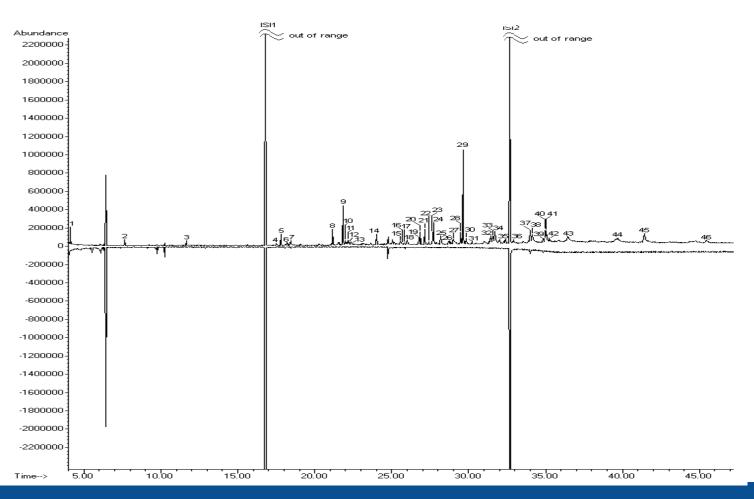
"*if the packaging system is relatively permeable,* the possibility increases that the dosage form could be contaminated by the migration of an ink or adhesive component...*In such case the secondary packaging component should be considered a potential source of contamination* and the safety of its materials of construction should be taken into consideration..."

> EMA: 'Guideline on Plastic Immediate Packaging Materials', 2005:

"it should be scientifically demonstrated that **no components of ink or adhesives, applied to the outer surface of the container closure system, will migrate into the medicinal product**."

SECONDARY PACKAGING

> Label


- > Adhesive
- Paper
- ≻ Ink
- ➤ Varnish

Typical extractable compounds:

Curing agents (e.g. Benzophenone, Irgacure 184,...) Solvent residues (e.g.Toluene, acetone) Adhesive residues (e.g. Acrylates) Paper residues (e.g. (dehydro)abietic acids, abietates)

• Example GC/MS Chromatogram of a Label Extract (IPA)

• SECONDARY PACKAGING

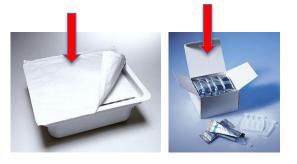
> Overwrap/Overpouch/Blister

(to compensate for potential lower barrier properties of the Polymer)

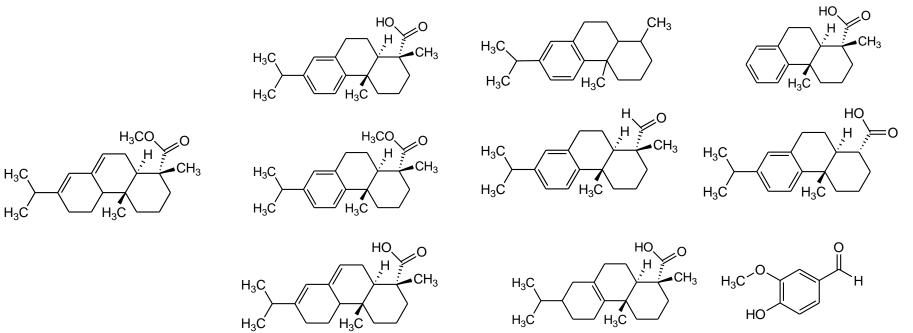
CH₃

- Multilayer System
- Aluminum as barrier layer
- Tie-layers to keep the different layers together

. . .


Typical extractable compounds:

Bislactone Compounds from Tie-layer \bigcirc Residues from other layers (depends largely on selected materials of the multilayer!!)



SECONDARY PACKAGING

- Tubs for Nested Syringes (eg Tyvek)
- > Carton / Paper (may also from label):

Example Structures of abietic acids / abietates (& Vanillin)

6. Main SVP containers: Extractrable Considerations

67

1.Vials:

5. Main SVP Containers: Extractable Considerations

VIALS for Liquid Drug Products or Reconstitution Solution

- If it is a GLASS VIAL with RUBBER CLOSURE: Sources of Impurities, coming from packaging:
 - Glass: Metals (may not be necessary to be studied in EXT Study, if glass composition is available, direct assessment in LEA study)

> Rubber Closure:

- ✓ Typically, higher migration when solution is in contact (inverted)
- ✓ Migration will be determined by:
 - Solubility of leachables in Drug Product Solution
 - Potential Diffusion of Compounds through rubber, into solution
 - Temperature
- ✓ VOC, SVOC and NVOC & some metals may cause a **Safety Issue**
- VOC, SVOC, NVOC, Silicone Oil and some Metals may also be Reactive e.g. with reconstituted DP: also potential Performance & Quality Issue!
- ✓ Also, lons may need to be "checked off"...

5. Main SVP Containers: Extractable Considerations

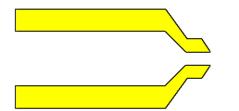
LYO-CAKE VIAL

Sources of impurities, coming from packaging

No "Liquid Film" barrier

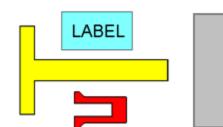
on rubber

- **Glass**: Metals (may not be necessary to be studied in EXT Study, if glass composition is available, direct assessment in LEA study)
- **Rubber Closure:** \succ
 - ✓ **No Direct Contact** between DP and Closure (upright)
 - **HOWEVER:** Release of Volatile (VOC) and Semi-Volatile (SVOC) \checkmark Compounds from the Rubber Closure vial desorption and subsequent adsorbtion of compounds onto Lyo-Cake!
 - Lyo-cake acts as adsorbent for VOC and SVOC compounds! Released Compounds are concentrated over time onto the Lyo Cake
 - Regardless if vial is in upright or inverted position (contact / no contact) with DP)
 - ✓ VOC and SVOC may also be **Reactive** with DP: also potential Performance & Quality Issue!
 - ✓ Also NVOC, Metals and lons need to be "checked off", because of short term contact with Reconstituted DP


2. Pre-Filled Syringe:

71

71


BARREL – Glass, COC/COP, PP, Silicone Oil, ...

	_

3

NEEDLE – Metals, Tungsten (W), Needle Glue, ...

RUBBER SEALINGS (Plunger Tip, Tip Cap, Disks) -Rubber, Silicone, ...

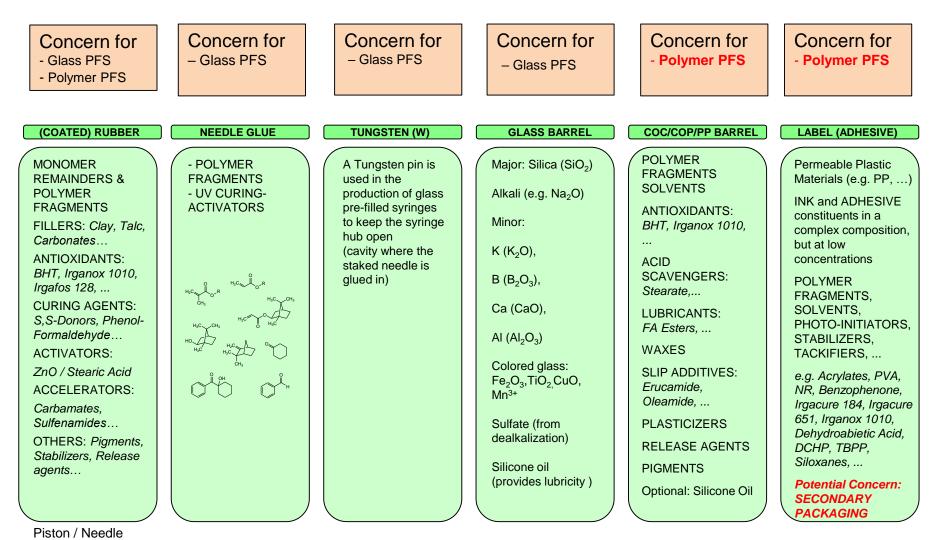
SECONDARY (Needle Shield, Label, Stem, ...) – Rubber, Label Adhesive, ...

5. Main SVP Containers: Extractable Considerations

Pre-Filled Syringes

- BARREL: Metals (may not be necessary to be studied in EXT Study, if glass composition is available, direct assessment in LEA study) Silicone Oil residues may cause protein aggregation
- Rubber Plunger (very similar to rubber stopper for vial):
 - \checkmark Typically, higher migration when solution is in contact
 - \checkmark Migration will be determined by:
 - Solubility of leachables in Drug Product Solution
 - Potential **Diffusion of Compounds through rubber**, into solution
 - Temperature
 - ✓ VOC, SVOC and NVOC may cause a safety issue
 - ✓ VOC, SVOC, NVOC, Silicone Oil and some Metals may also be **Reactive** with reconstituted DP: also potential Performance & Quality Issue!
 - ✓ Also, lons may need to be "checked off"...
 - ✓ Coated versus Non-Coated plungers

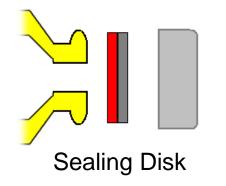
5. Main SVP Containers: Extractable Considerations



- GLUE for staked needle: Glue residues may for protein denaturation
- **TUNGSTEN Residues**: May cause protein aggregation
- NEEDLE SHIELD:

Pre-Filled Syringes

- No Direct Contact between DP and Needle Shield
- HOWEVER: Release of Volatile (VOC) and Semi-Volatile (SVOC)
 Compounds from the Needle shield into the content of the PFS is possible!
- VOC and SVOC may also be Reactive with DP: also potential Performance & Quality Issue!
- Typically No NVOC, Metals and lons investigation is necessary for a Needle Shield.


3. Cartridges

5. Main SVP Containers: Extractable Considerations

Cartridges

- > Sealing Disk:
 - ✓ Typically, a sealing disk is a **two-layered** system
 - The inner layer has product contact (primary contact), should be the focus of the investigation
 - "One Sided" extraction mimics the product contact, avoids contribution of the outer layer
 - Complete Extraction of the 2 layered sealing disk can be considered as "Worst Case"
 - ✓ Both approaches can be taken and have found regulatory acceptance

5. Main SVP Containers: Extractable Considerations

.....

BARREL: Metals (may not be necessary to be studied in EXT Study, if glass composition is available, direct assessment in LEA study) Silicone Oil residues may cause protein aggregation

> Cartridge Plunger (same as for PFS!):

- ✓ Typically, higher migration when solution is in contact (inverted)
- ✓ Migration will be determined by:
 - Solubility of leachables in Reconstitution Solution (typically inorganic aqueous solution (typically low solubility for most non-polar organic compounds)
 - Potential Diffusion of Compounds through rubber, into solution
 - Temperature

Cartridges

- ✓ VOC, SVOC and NVOC may cause a safety issue
- ✓ VOC, SVOC, NVOC, Silicone Oil and some Metals may also be **Reactive** with reconstituted DP: also potential Performance & Quality Issue!
- ✓ Also, lons may need to be "checked off"...

TIME FOR QUESTIONS

pchristiaens@nelsonlabs.com