pda.org

Single-use System Integrity

Dr. Mathias Siebner, Product Specialist Separation Technologies

Agenda

Introduction

- Industry & Regulatory Framework
- SUS Robustness
- Science Behind Integrity of SUS
- Technologies for Leak or Integrity Testing of SUS
- Summary

Leak vs. Integrity Testing & Definitions

- Leak test a test used to identify leaks of any sizes in a SUS.
- Integrity Test a test used to confirm the defined barrier properties of a SUS.
- Maximum Allowable Leakage Limit the greatest leakage rate (or leak size) tolerable for a given product package to maintain its barrier properties under its use-case conditions (e.g. prevent any risk to product safety, product quality or operator and environmental safety).
- **Integrity Assurance** a holistic approach of risk analysis and mitigation by means of product and process robustness, quality and process control and integrity testing.
- Non-destructive test method a test method that maintains the tested SUS in a condition for further use, without impacting its quality attributes.
- **Destructive test method** a test method that may destroy the tested SUS during the test and not allow further use.

Barrier Properties as Measure for Integrity

• **Barrier property** of this cage (container) is to keep the lion in.

• This container is integral.

Barrier Properties as Measure for Integrity

• Is the same container integral if its **barrier property** is to keep mosquitos in?

• This container is not integral.

pda.org

What's the Best Approach to Ensure Integrity?

IF windows keep out birds, **THEN** should we detect a defective window by checking homes for birds?

REMEMBER: Single-use System Integrity...

- ...IS NOT passing a microbial ingress test.
- ...IS the absence of a defect that puts product quality or operator and environmental safety at risk.
- **...IS** the conformance of the package the maximum allowable leakage limit (MALL).

What's the Best Approach to Ensure Integrity?

- **INSTEAD** of checking for birds...
- **Design and make** windows that close well based on meaningful, reliable tests.
- Test for absence of defects that could permit birds.
- Monitor to ensure control over materials and processes.

SUS Integrity Approach

- QbD & validation to reach consistent SU system robustness
- Process control, quality control & integrity testing
- Understand liquid leakage & bacteria ingress mechanisms
- Correlate integrity testing detection limits to liquid leaks & microbial ingress under process conditions
- Implement 100% physical supplier integrity testing
- Provide point of use testing

Integrity Testing Technology Combined with the robustness of our self-deploying bags, our integrity tests ensure that no product leakage or microbial ingress can occur during drug manufacturing process

Agenda

- Introduction
- Industry & Regulatory Framework
- SUS Robustness
- Science Behind Integrity of SUS
- Technologies for Leak or Integrity Testing of SUS
- Summary

Current Main Industry Guidance and Standards Initiatives

Annex1 - Manufacture of Sterile Medicinal Products (Revision – Not yet published)

PDA TR 86 2021 Industry Challenges and Current Technologies for Pharmaceutical Package Integrity Testing

ASTM E3244 2020 Standard Practice for Integrity Assurance & Testing of SUS

ASTM E3251 2020 Test Method for Microbial Ingress Testing on SU

ASTM WK74440 Proposed Test Method for Physical Integrity Testing for SUS

BPSA 2017 Design, Control, and Monitoring of SUS for Integrity Assurance

The Challenge is to Ensure That No Product Leakage or Microbial Ingress Can Occur During the SUS lifecycle

•	QbD & validation to reach consistent SU system
	robustness

- Process control, quality control & integrity testing
- Understand liquid leakage & bacteria ingress mechanisms
- Correlate integrity testing detection limits to liquid leaks & microbial ingress under process conditions
- Implement 100% physical supplier integrity testing
- Provide point of use testing

Combined with the robustness of our self-deploying bags, our integrity tests ensure that no product leakage or microbial ingress can occur during drug manufacturing process

Agenda

- Introduction
- Industry & Regulatory Framework

SUS Robustness

- Science Behind Integrity of SUS
- Technologies for Leak or Integrity Testing of SUS
- Summary

Material Science Expertise for Robustness & Safety by Design

Flexsafe® Film & Bags

Material science & film expertise Raw material selection & film layer combination

QbD & product validation > 3000 mechanical tests ASTM D4169 shipping test

Process control Control of raw materials, film extrusion & welding leak test on bags

pda.org

Continuous Integrity Improvement by Developing More Sensitive Leak Detection Technologies

• Identifying smaller defects help understand failure mode & improve process capabilities

	Supplier		Supplier	End-User
	Process Validation		Process Control	Process Validation & Controls
•	Mechanical tests	•	Seal tests	Package integrity
•	Microbial immersion	•	Visual inspections	Visual inspection
•	Packaging validation	•	2D bag chamber leak test,	Media hold & media fill
•	Shipping validation		sensitivity ≥ <u>40 μm</u>	Microbial immersion test
•	Microbial ingress test &	•	Finished product Supplier Integrity Test	 Operator training to best practices
liqu cali ide cor test	liquid leak test using calibrated defects to		(upon request), sensitivity ≥ <u>2 μm</u>	 2D pre-use point of use leak test, sensitivity ≥ <u>10 μm</u>
	correlate physical integrity testing			 3D post-installation point of use leak test, sensitivity ≥ <u>50 μm</u>

*MALL: the greatest leakage rate (or leak size) tolerable for a given product package to maintain its barrier properties under its use-case conditions, (ASTM E3244)

Intermediate Process Control, Quality Control & Final Product Integrity Testing – Example for Flexboy & Flexsafe 2D Bags

Agenda

- Introduction
- Industry & Regulatory Framework
- SUS Robustness
- Science Behind Integrity of SUS
- Technologies for Leak or Integrity Testing of SUS
- Summary

Understand Liquid Leakage and Microbial Ingress Mechanisms on Film Materials Used in Single-use Biomanufacturing

- Demonstrate the relation between microbial ingress and liquid leak
- Establish a predictive model to determine the Maximum Allowable Leakage Limit (MALL*) under any process conditions
- Establish a correlation between liquid leak/microbial ingress and physical integrity testing
- Develop and validate the physical test methods with detection limits that guarantee the absence of liquid leak/microbial ingress in SUS

*MALL: the greatest leakage rate (or leak size) tolerable for a given product package to maintain its barrier properties under its use-case conditions, (ASTM E3244)

Process Conditions May Impact Liquid Leak & Microbial Ingress

Microbial Aerosol Tests on 300 Film Samples Show No Ingress For 1 & 2 μm Defect at 300 mbar

Microbial ingress results at 300 mbar imposed pressure

	Hole size µm	1µm	2µm	3µm	5µm	10µm
PE	Number of samples	30	30	30	30	30
film	Number of ingress	0	2	2	10	22
EVA	Number of samples	30	30	30	30	30
film	Number of ingress	0	0	9	17	13

Probability for Microbial Ingress at **300 mbar** Pressure on PE Film

Predictive Model to Define Applicationspecific MALL

- Establishes the MALL for any process condition
- Based on observed data for microbial ingress at various pressure conditions
- MALL defined as a probability of for microbial ingress of <10%

in Film Material 60 **Experimental Data** (un) 50 Maximum Allowable Log. (Experimental Data) 40 -eakage Limit 30 Storage 20 Application -10µm - 25µm 10 Shipping Application 2µm = 10µm - -0 100 200 300 0 Pressure Applied (mbar)

Predictive Model for Microbial Ingress

Conclusion from Results Obtained on Liquid Leak & Microbial Ingress Studies on SUS

- Results obtained on film materials fall into the existing models for sterile package using micro tubes
- Both studies, liquid leak and microbial ingress ones, tend to confirm that leak sizes for liquid flow are not significantly different from leak sizes for sterility loss
- The conditions of use (pressure) does significantly impact the Maximum Allowable Leakage Limit (MALL)
- 2 μm is the MALL under any conditions and both, for liquid leak and microbial ingress

PDA Journal Publication Series:

Single-use System Integrity I: Using a Microbial Ingress Test Method to Determine the Maximum Allowable Leakage Limit (MALL) <u>https://journal.pda.org/content/73/5/459</u> Single-use System Integrity II: Characterization of Liquid Leakage Mechanisms <u>https://journal.pda.org/content/early/2020/11/16/pdajpst.2020.012088</u> Single-Use System Integrity III: Gas Flow Rate Through Laser-Drilled Microchannels in Polymeric Film Material <u>https://journal.pda.org/content/early/2021/06/15/pdajpst.2021.012631</u>

Agenda

- Introduction
- Industry & Regulatory Framework
- SUS Robustness
- Science Behind Integrity of SUS
- Technologies for Leak or Integrity Testing of SUS
- Summary

Integrity Testing With Detection Limits Correlated to Microbial Ingress & Liquid Leaks

- Helium supplier integrity test with detection limit of 2µm.
 - Smallest defect size detectable by integrity test
 - Confirms the integrity of the complete assembly
- Pressure decay test confirms the absence of defects at the point-of-use.
 - Can also correlate to liquid leaks & microbial ingress

Bag Chamber Leak Test Ensures the Absence of Leaks on Film Surface as well as Bag & Port Welding for 100% of Our 2D Bags

- ASTM F2095 Pressure decay testing
- Restraining plates
 - Reduce stress on bag
 - Provide small inflation volume
 - Allow high test pressure: 500 mbar
- Porous spacer avoid masking effect of potential leaks

20-year experience in leak testing. 20 million bags produced.

COPYRIGHT © PDA 2018

Finished Product SIT to Test 100% of 2D & 3D Bag Assemblies for Storage, Shipping & Mixing Used in Critical DS & DP Applications

- · Helium gas tracer in vacuum chamber
- Restraining plates
 - Reduce stress on bag
 - Provide small inflation volume
 - Porous spacer avoid masking effect of potential lea

PoU-IT for 2D Bags Ensures that No Defects Have Been Generated During Shipping & Handling

- Pressure decay with restraining plates & porous spacers
- Restraining plates
 - Reduce stress on bag
 - Provide small inflation volume
 - Allow high test pressure: 300 mbar
- Porous spacer avoid masking effect of potential leaks

Combining small volume, high test pressure and spacers provides a fast, reproducible, accurate and sensitive test. <u>Detection limit:</u> **10 µm correlated** to microbial ingress and liquid leaks at storage pressure conditions

pda.org

- Measurement of defective & non-defective samples
- Use of representative and deliberately calibrated defective bag film patches for defect simulation
- Reliability proven using samples from multiple batches
- 10µm detection validated applying a 6 sigma confidence interval

BC-LT

Final

PoU-LT for 3D Bags Ensures that No Gross Defects Have Been Generated During Shipping, Handling & Installation

- **Pressure decay** with porous spacers after installation inside the final container
- Porous spacers avoid masking effect of potential leaks
- Container mechanically supports the bag
- Fast filling kit available to shorten test times for large volumes
- Test is performed after installation, directly before use to detect leaks caused during complex handling & installation steps
- Detection limit: 100 200 μm for storage & shipping bags
 50 400 μm for mixing bags

PoU-LT Ensures that No Gross Defects Have Been Generated During Shipping, Handling & Installation | SU STR Bioreactor

- **Pressure decay** with porous spacers after installation inside the final container
- · Porous spacers avoid masking effect of potential leaks

Volume

- Container mechanically supports the bag
- Test is performed after installation, directly before use to detect leaks caused during complex handling & installation steps

	(L)	Max. test time (min)	Limit of detection (µn	n)
	50	40	50	
	200	55	100	
	500	65	200	
	1000	85	400	
	2000	120	600	
aking	1 BC-LT	Final assembly	2 SIT S	te hip

pda.org

PoU-LT /

Proven Integrity of your process improves patient safety, regulatory compliance, production costs and drug availability

- Enhances patient and operator safety
- Prevents any risk of high value product loss at commercial phase
- Meets cGMP regulatory expectations for single-use system integrity
- Speeds up drug product manufacturing capacity and market availability with SU proven process integrity

Mixing Point-of-Use Leak Test

Application: Gross Leaks Detection prior to Mixing

Point of Use Leak Test ensures that no gross defects have been generated during shipping, handling and installation

- A risk-based approach indicates that creating a defect of a size < 200 µm during the transportation, handling, storage and installation of is very unlikely to happen
- Test is performed after bag installation, directly before use to detect leaks caused during complex handling and installation steps
- Accurate pressure decay leak measurement
 - derived from ASTM F2095* test method
 - using Sartocheck® 4 plus Bag tester

* ASTM F2095-07: "Standard Test Methods for Pressure Decay Leak Test for Flexible Packages with and without Restraining Plates."

Mixing Point-of-Use Leak Test

Components Needed for Bag Testing

Mixing Point-of-Use Leak Test

Porous Spacers I Fleeces Avoids False Results

Porous spacers avoid masking effect due to direct contact of the bag onto the stainless steel panels of the Palletank

- Patented porous spacer | Bag tester fleeces
- The fleeces are designed to perfectly fit the shape of the Palletank and fixed using Bag tester clamps
- Fleeces can be easily removed after the test, important for heat transfer in jacketed Palletanks

Air Filling at Low Pressurization I Stabilization I Test

- The Bag Tester fills directly to 50 mbar and stabilizes afterwards
- Air filling through pre-assembled gamma stable Air filter to avoid any sterility breakage
- All clamps can remain open during the test thus leak test also includes lines and connections
- This is not true if lines are fitted with filter, open tube, connections with membranes (Opta, KPC etc.), then clamp must be closed
- After stabilization time valves close and the pressure drop is measured

Mixing Point-of-Use Leak Test: Pass or Fail?

Test PASS

- Pressure drop remained below threshold limit, the test passed
- The bag is non-defective
- Mixing process can start

Test FAIL

- Pressure drop exceed the limit, the test failed
- Leak detected, the bag shall not be used

