pda.org



## **Mastering AVI**

Part8: Visual inspection life-cycle and control strategy

- Integration of visual inspection into overall manufacturing process
- Elements of lifecycle
- Particle identification/characterization
- Defect libraries as dynamic database
- AQL and control charting



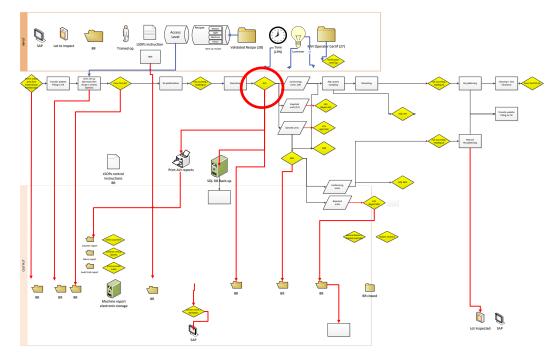
Instructor Lead: Romain Veillon / Fernand Koert / Sébastien Koch

© Copyright PDA Author Romain Veillon

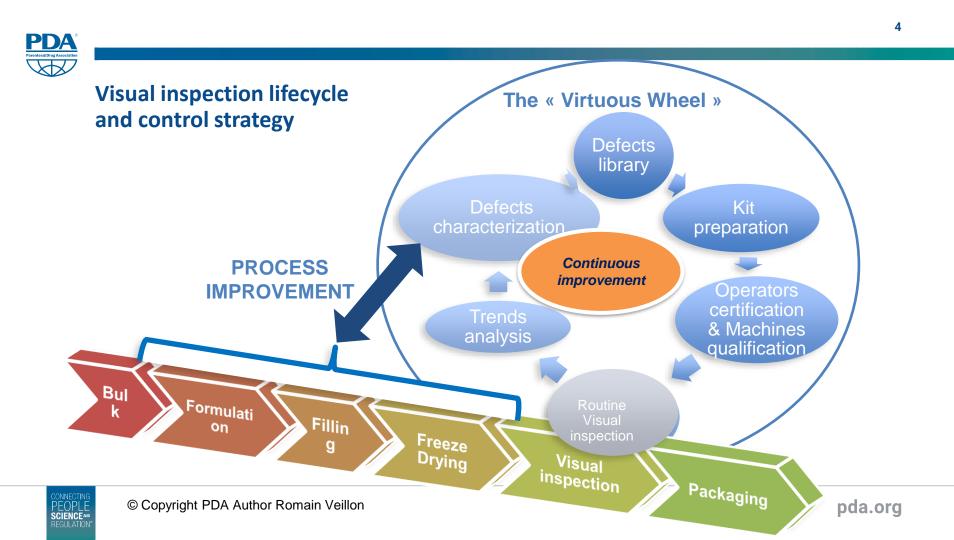


#### **Mastering Automated Visual Inspection**

.....control strategy is key





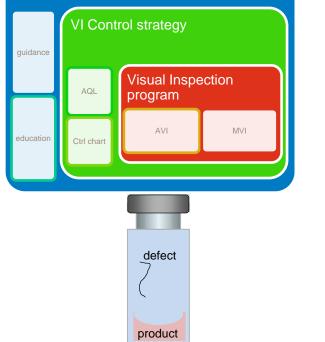






#### **AVI Equipment is part of an overall VI process**



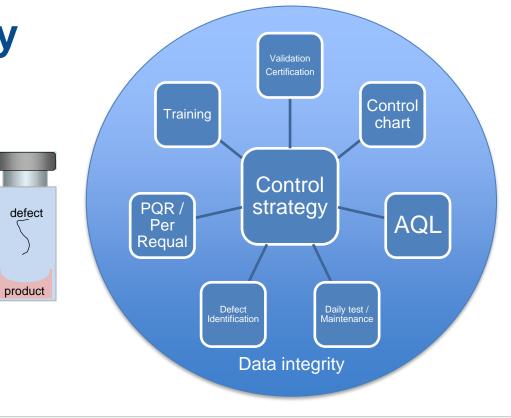







#### Visual inspection program in 3 layers:

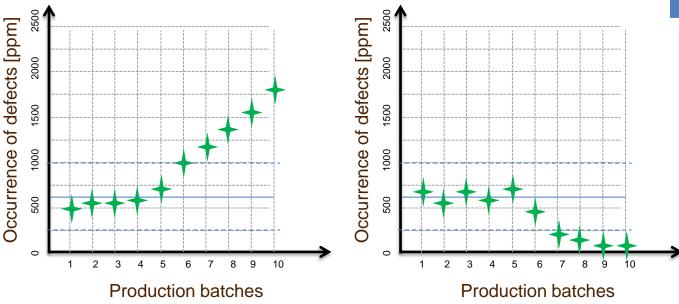
- -The Core is AVI/MVI program, with strategy for DML / standard work / certification / validation
- -The control strategy with ctrl chart and AQL guarantees that VI is kept under control
- Continuous improvement is the goal of all VI activities with CAPA mngt. The Particle management is a key to success with particle control and associated WOW & education, product life cycle approach











### **Control strategy**







#### Why defect trending is key ?



Key take-away: SPC trend chart is a way to control absence of drift of VI process



pda.org



### Why a robust SPC is key for VI?

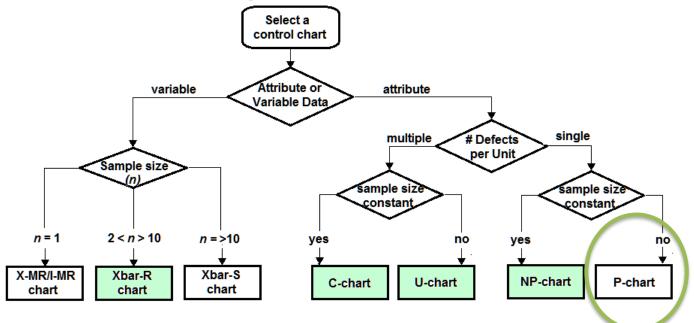
Use of ctrl chart necessary because VI is a Markov like process (probabilistic)



$$UCL = \overline{p} + 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n_i}} \qquad UCL = \overline{p} + 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n_i}}$$

• 3 sigma probability follow binomial law

with 99,7% proportion of defective units



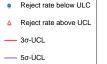

Key take-away: AVI is probabilistic So it is key to control source contamination upstream even if AVI is validated

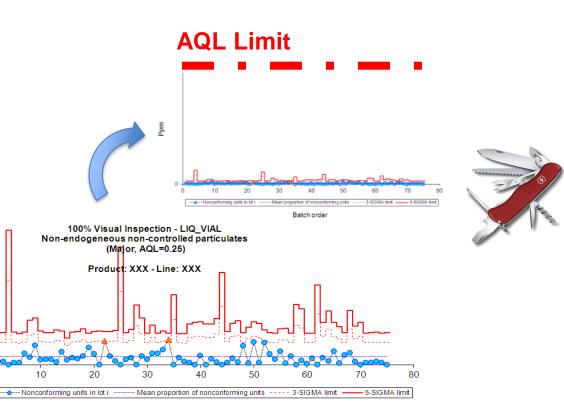




#### Type of control charting






#### **Continuous Performance Monitoring**

Control Strategy- Ctrl chart

Take AWAY: Even with a low probability of detection (non NULL!!) the UCL limit is the strength of the control strategy, it has the ability to discard atypical lots in term of occurrences. It has a far lower detection than AQL Even with probabilistic detection ctrl chart can detect atypical lots



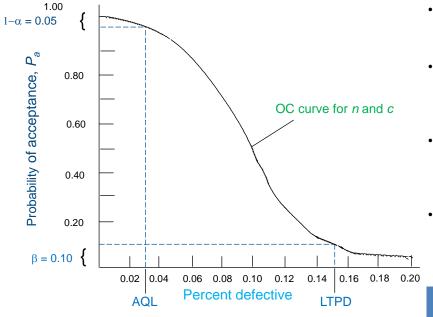


Batch order





# AQL Sampling

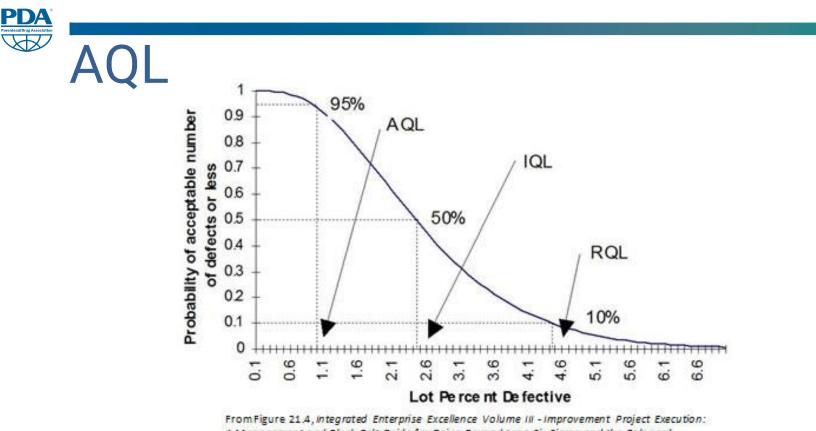

- AQL done in MVI
- AVI qualification is compared to MVI reference
- Use ISO tables
- AQL is a quality decision test
- AQL is under quality unit reponsibility



11

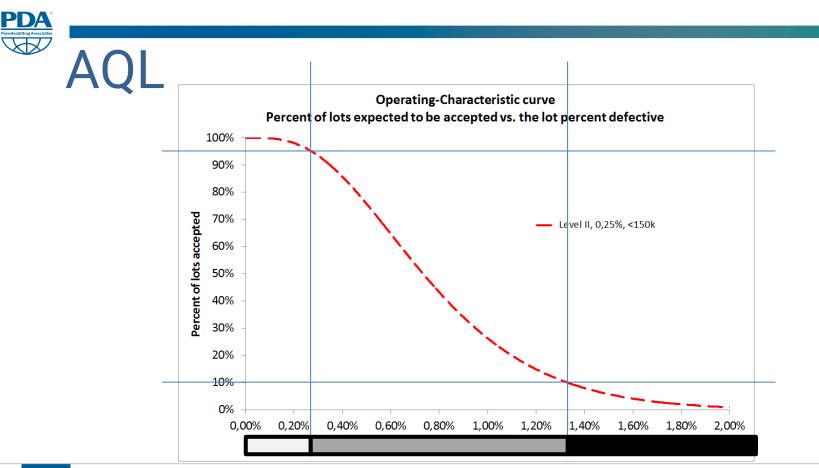


#### AQL Sampling and OC curve



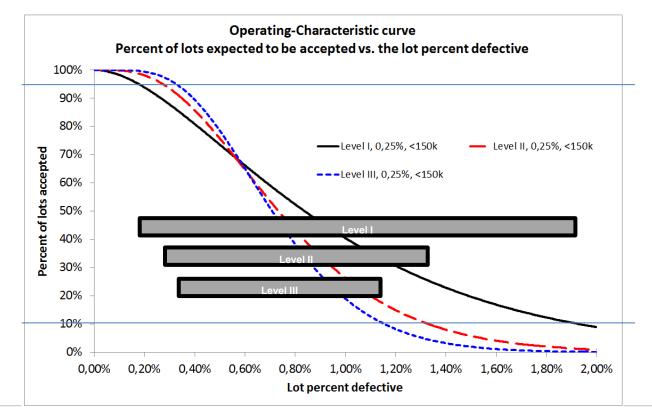

- Acceptable quality level (AQL) Acceptable fraction defective in a lot
- Lot tolerance percent defective (LTPD or RQL)
  - Maximum fraction defective accepted in a lot
- Producer's risk,  $\alpha$ 
  - Type I error = P(reject a lot|probability (defective)=AQL)
  - Consumer's risk, β Type II error = P(accept a lot| probability(defective)=LTPD or RQL)

<u>Key learning:</u> AQL are always associated to RQL in an OC curve, this is the patient risk




pda.org




From Figure 21.4, integrated Enterprise Excellence Volume III - Improvement Project Executi A Management and Black Belt Guide for Going Beyond Lean Six Sigma and the Balanced Scorecard, Forrest W. Breyfogle III, Bridgeway Books/Citius Publishing, Austin, TX, 2008.















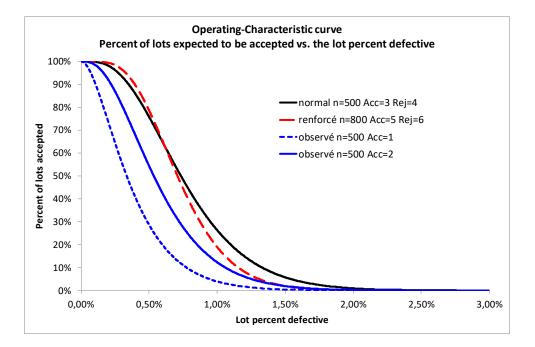
#### AQL Sampling and ISO tables

| Sample<br>size<br>code<br>letter | Sample<br>size |       | Acceptance quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (normal inspection) |       |       |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |       |        |        |       |       |       |      |
|----------------------------------|----------------|-------|---------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|--------|--------|-------|-------|-------|------|
|                                  |                | 0.010 | 0.015                                                                                                               | 0,025 | 0,040 | 0,065 | 0,10  | 0,15  | 0,25  | 0,40  | 0,65  | 1,0   | 1,5   | 2,5   | 4,0      | 6,5   | 10    | 15    | 25    | 40    | 65    | 100    | 150    | 250   | 400   | 650   | 1 00 |
|                                  |                | Ac Re | Ac Re                                                                                                               | Ac Re | Ac Re | Ac Re | Ac Re | Ac Re | Ac Re | Ac Re | Ac Re | Ac Re | Ac Re | Ac Re | Ac Re    | Ac Re | Ac Re | Ac Re | Ac Re | Ac Re | Ac Re | Ac Re  | Ac Re  | Ac Re | Ac Re | Ac Re | Ac R |
| A                                | 2              | Π     | Π                                                                                                                   | Π     | Π     | Π     | Π     | Π     | Π     | Π     | Π     | Π     | Π     | Π     | ∿        | 0 1   | Π     | ♦     | 1 2   | 2 3   | 3 4   | 5 6    | 78     | 10 11 | 14 15 | 21 22 | 30 3 |
| в                                | 3              |       |                                                                                                                     |       |       |       |       |       |       |       |       |       |       | Ŷ     | 0 1      | ټ     | 1     | 1 2   | 2 3   | 3 4   | 5 6   | 78     | 10 11  | 14 15 | 21 22 | 30 31 | 44 4 |
| с                                | 5              |       |                                                                                                                     |       |       |       |       |       |       |       |       |       | Ŷ     | 0 1   | ټ        | ∿     | 1 2   | 2 3   | 34    | 5 6   | 78    | 10 11  | 14 15  | 21 22 | 30 31 | 44 45 |      |
| D                                | 8              |       | -                                                                                                                   |       | 1-11  |       |       | 1-11- |       |       | 1-11- | 1     | 0 1   | �     | ₽        | 1 2   | 2 3   | 3 4   | 56    | 78    | 10 11 | 14 15  | 21 22  | 30 31 | 44 45 |       | 11   |
| Е                                | 13             |       |                                                                                                                     |       |       |       |       |       |       |       | 1     | 0 1   | ټ     | ∿     | 1 2      | 2 3   | 34    | 5 6   | 78    | 10 11 | 14 15 | 21 22  | 30 31  | 44 45 | Ŷ     |       |      |
| F                                | 20             |       |                                                                                                                     |       |       |       |       |       |       | Ŷ     | 0 1   | ↔     | ❖     | 1 2   | 2 3      | 34    | 56    | 78    | 10 11 | 14 15 | 21 22 |        |        | 介     |       |       |      |
| G                                | 32             |       |                                                                                                                     |       | 1-11- |       |       |       | 1     | 0 1   | أ     | ₽     | 12    | 2 3   | 3 4      | 5 6   | 78    | 10 11 | 14 15 | 21 22 | Ŷ     | 1-11-  |        |       |       | t-  - | F1F  |
| н                                | 50             |       |                                                                                                                     |       |       |       |       | 1     | 0 1   | ټ     | \$    | 1 2   | 2 3   | 34    | 5 6      | 78    | 10 11 | 14 15 | 21 22 |       |       |        |        |       |       |       |      |
| J                                | 80             |       |                                                                                                                     |       |       |       | 1     | 0 1   | ټ     | ∿     | 1 2   | 2 3   | 34    | 56    | 78       | 10 11 | 14 15 | 21 22 | 俞     |       |       |        |        |       |       |       |      |
| к                                | 125            |       |                                                                                                                     |       | 111   | 1     | 0 1   | ټ     | \$    | 1 2   | 2 3   | 3 4   | 5 6   | 78    | 10 11    | 14 15 | 21 22 | 介     |       |       |       | 1-11-  | -    - |       |       |       | 11   |
| L                                | 200            |       |                                                                                                                     |       | 1     | 0 1   | ♦     | \$    | 1 2   | 2 3   | 34    | 5 6   | 78    | 10 11 | 14 15    | 21 22 | 介     |       |       |       |       |        |        |       |       |       |      |
| м                                | 315            |       |                                                                                                                     | 1     | 0 1   | أ     | ∿     | 1 2   | 2 3   | 34    | 56    | 78    | 10 11 | 14 15 | 21 22    | 介     |       |       |       |       |       |        |        |       |       |       |      |
| N                                | 500            |       | 1                                                                                                                   | 0 1   | ☆     | ∿     | 1 2   | 2 3   | 34    | 56    | 78    | 10 11 | 14 15 | 21 22 | <b>î</b> |       |       |       |       |       |       |        |        |       |       |       | F1F  |
| P                                | 800            | ₽     | 0 1                                                                                                                 | ټ     | \$    | 1 2   | 2 3   | 34    | 56    | 78    | 10 11 | 14 15 | 21 22 | 介     |          |       |       |       |       |       |       |        |        |       |       |       |      |
| Q                                | 1 250          | 0 1   | î                                                                                                                   | ❖     | 1 2   | 2 3   | 34    | 5 6   | 78    | 10 11 | 14 15 | 21 22 |       |       |          |       |       |       |       |       |       |        |        |       |       |       |      |
| R                                | 2 000          | ৵     | -0-                                                                                                                 | 1 2   | 2 3   | 34    | 56    | 78    | 10 11 | 14 15 | 21 22 | ৵     |       | -11-  | 1        | 1     |       |       | 1     | -0-   |       | 1-11-1 | 1-0-   |       | 1     | 1-0-  | ΓŬ   |

#### Table 2-A — Single sampling plans for normal inspection (Master table)

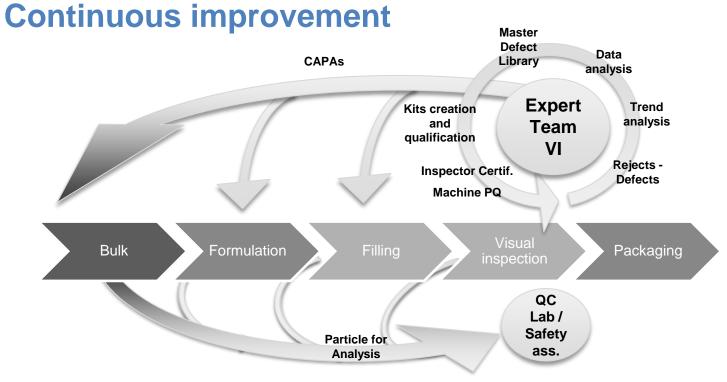
🕹 = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 $\mathbf{\hat{v}}$  = Use the first sampling plan above the arrow.


Ac = Acceptance number

Re = Rejection number






#### Why do we need to perform Tightened AQL in special cases ?













In this section you have learnt:

| Ctrl   | Integration of visual inspection into overall manufacturing process |  |  |  |  |  |  |  |
|--------|---------------------------------------------------------------------|--|--|--|--|--|--|--|
| strat. | Elements of lifecycle                                               |  |  |  |  |  |  |  |

Particle identification/ characterization

Defect libraries as dynamic database

AQL and control charting

