PDA Training Course Extractables & Leachables 31 May 2022

THE MECHANISM OF POLYMER MIGRATION -A DESCRIPTIVE APPROACH

Koen Smets, Senior E&L expert

OVERVIEW

- 1. Fabes model a descriptive approach
- 2. Factors affecting leaching
 - Solubility of a leachable in a polymer
 - Diffusion of a leachable through a polymer
- 3. Application specific effect
 - Supersaturation
 - Outgassing
 - Blooming

OVERVIEW

1. Fabes model – a descriptive approach

- 2. Factors affecting leaching
 - Solubility of a leachable in a polymer
 - Diffusion of a leachable through a polymer
- 3. Application specific effect
 - Supersaturation
 - Outgassing
 - Blooming

1. FABES MODEL – A DESCRIPTIVE APPROACH

Migration of leachables from polymers into a liquid can be described by the **FABES MODEL**:

$$\frac{m_{F(t)}}{A} = 0.1 c_{p,0} \rho_p d_p \left(\frac{\alpha}{\alpha+1}\right) \left[1 - \sum_{n=1}^{\infty} \frac{2 \alpha (1+\alpha)}{1+\alpha+\alpha^2 q_n^2} \exp\left(-D_p t \frac{q_n^2}{dp^2}\right)\right]$$

 m_F (t): amount of migrant (mg/kg) in the polymer as a function of time t (s) A: area of the interface (cm²)

$$D_P = 10^4 \exp[A_P - 0.1351(MW)^{2/3} + 0.003MW - 10450/T]$$

$$\alpha = \frac{V_L/V_P}{K_{P,L}}$$

Important factors:

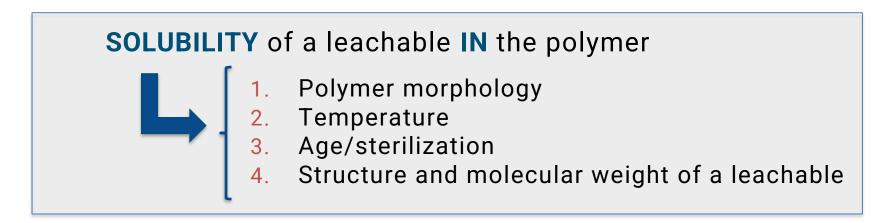
- C_{p,0}: initial migrant concentration i/t polymer MW: molecular weight of the migrant (Da)
- ρ_{p} : density of the polymer (g/cm³)
- d_p : thickness of the polymer (cm)
- D: diffusion coefficient (cm²/s)
- A_p: "mobility" of the polymer

 V_1 : volume of the liquid (cm³)

- V_P: volume of the polymer (cm³)
- K_{P,L}: partition coefficient (solubility)
- T: temperature (K)

 \rightarrow Very complex model: more qualitative discussion of factors in next slides

OVERVIEW

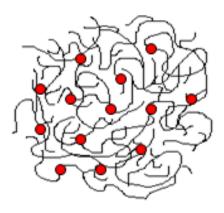

- 1. Fabes model a descriptive approach
- 2. Factors affecting leaching
 - Solubility of a leachable in a polymer
 - Diffusion of a leachable through a polymer
- 3. Application specific effect
 - Supersaturation
 - Outgassing
 - Blooming

2. FACTORS AFFECTING LEACHING

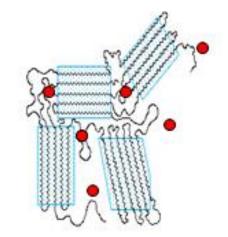
Leaching will depend upon:

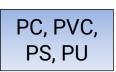
DIFFUSION of a leachable **THROUGH** the polymer

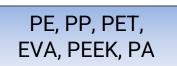
- Polymer morphology
 Temperature
 Polymer type (T_g)
 Molecular weight of a leachable
 Contact fluid/environment



<u>1. Polymer morphology</u>

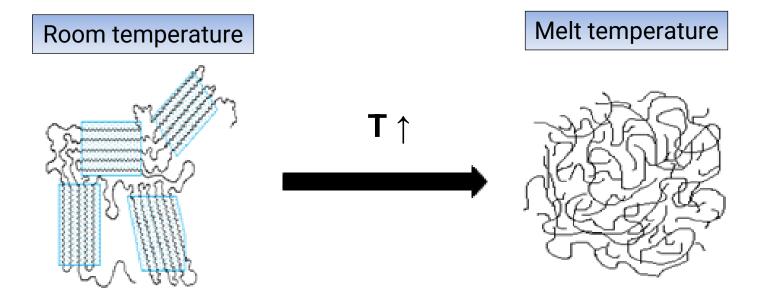

AMORPHOUS


SEMI-CRYSTALLINE


Polymer additive/impurity

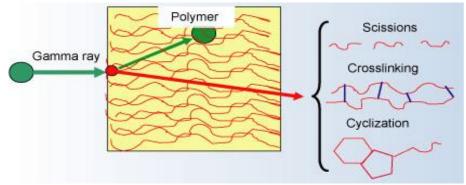
- Dissolves in amorphous phase
- Insoluble in crystalline phase

CRYSTALLINE SITES: BARRIER FOR MIGRATION



2. Temperature

As temperature increases, solubility increases


RESULT: BETTER SOLUBILITY at higher T LESS "CRYSTAL BARRIER" for migration

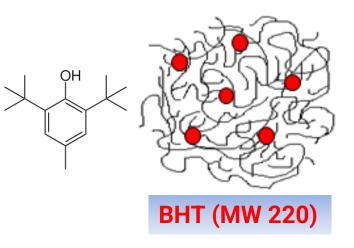
3. Age / sterilization

Polymer degradation
 Changes in polymer crystallinity
 Polymer additive degradation

This will impact the: LEACHABLES SOLUBILITY LEACHABLES MIGRATION

CONCLUSION:

» Perform E&L testing on final STERILIZED SYSTEMS



VS.

4. Structure and molecular weight of a leachable

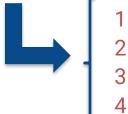
Molecular weight

 \rightarrow larger molecules = lower solubility

Polarity "match"Melting point

Irganox 1010 (MW 1176)

- \rightarrow structurally ALIKE
- \rightarrow higher T_{melt} = lower solubility
- → impacted by molecular symmetry & crystallinity

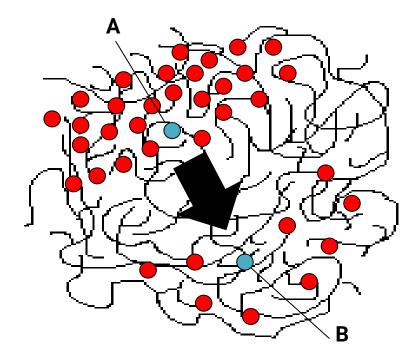


2. FACTORS AFFECTING LEACHING

Leaching will depend upon:

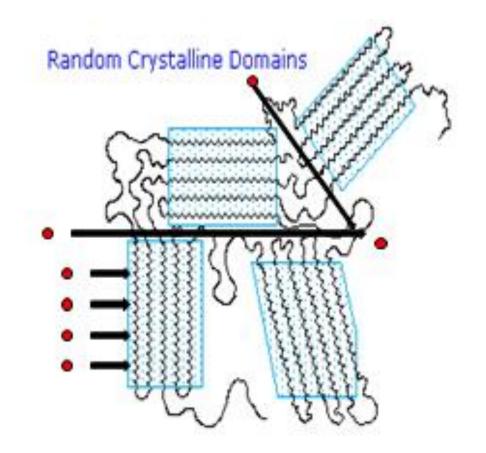
SOLUBILITY of a leachable **IN** the polymer

- Polymer morphology
 Temperature
 Age/sterilization
 Structure and molecular weight of a leachable


DIFFUSION of a leachable **THROUGH** the polymer

- Polymer morphology
 Temperature
 Polymer type (T_g)
 Molecular weight of a leachable
 Contact fluid/environment

FICK'S 2nd LAW OF DIFFUSION:


$$\frac{dC}{dt} = D \, \frac{d^2C}{dx^2}$$

with C: concentration t: time $(t_A \rightarrow t_B)$ x: distance $(x_A \rightarrow x_B)$ D: Diffusion coefficient $D = D_0 \exp(-E_A/RT)$

- **<u>1. Polymer morphology</u>**
- Crystalline sites: Impermeable barrier for polymer additives
- Filler particles: Diffusion barriers for polymer additives
- <u>Less diffusion in</u>: Semi-crystalline polymers

2. Temperature

Remember:

 $D = D_0 \exp(-E_A/RT)$ (E_A: activation energy, R: gas constant, T: temperature)

Therefore:

If T \uparrow , then D \uparrow

DIFFUSION of impurities/polymer additives will **increase exponentially** when **temperature increases**

3. Polymer type

Glass TransitionTemperature (T_g)

Polymer	transitions from to	GLASSY RUBBERY	(T < T _g) (T > T _g)
EXAMPLES			
LDPE	T _g = -125 °C T _g = -50 °C T _g = -25 °C	PBT	T _q = 70 °C
POM	T _a = −50 °C	PVC	T _a = 81 °C
PP	T _a = -25 °C	ABS	T _a = 110 °C
	5	PC	T _g = 70 °C T _g = 81 °C T _g = 110 °C T _g = 150 °C

DIFFUSION IN APOLAR > DIFFUSION POLAR POLYMERS

3. Polymer type

Lower T_q = higher potential for diffusion at room temperature

3. Polymer type

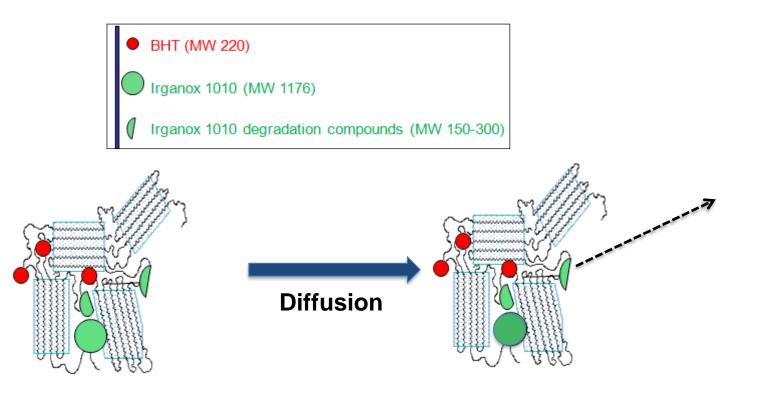
FREE VOLUME

Ratio of:

Interstitial space (between polymer chains) Total volume of the polymer

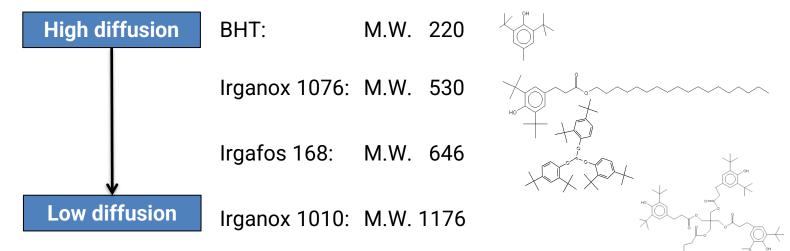
Polymers in a **Rubber State** $(T_g < T)$ Typically have **HIGHER** free volume

More free volume promotes diffusion

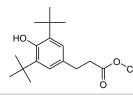


4. Molecular weight of leachable

Diffusion increases with decrease in M.W.



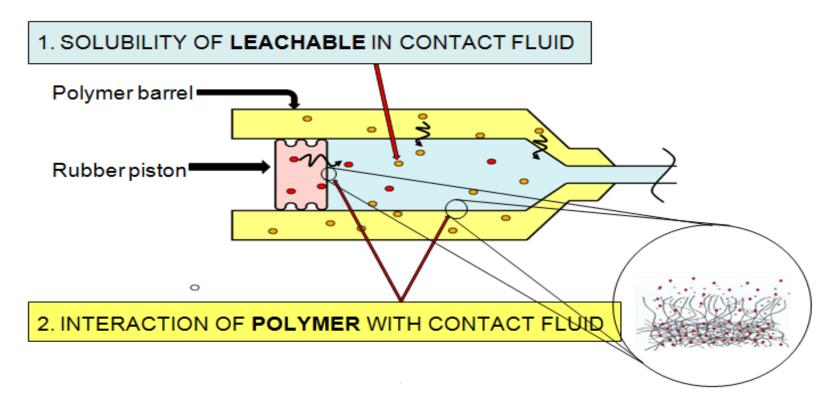
pda.org


4. Molecular weight of leachable

Oligomeric additives \rightarrow reducing diffusion

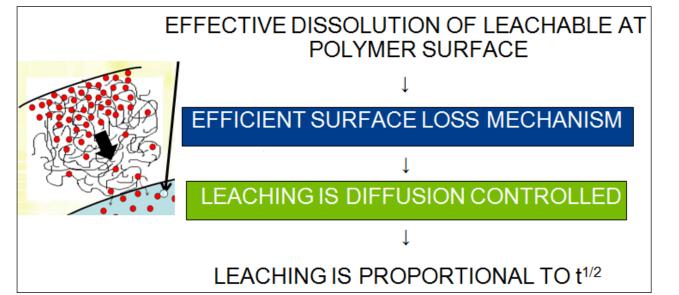
Polymer additive DEGRADATION into smaller molecules \rightarrow FASTER DIFFUSION of degradants

Example: 3,5-Di-*tert*-butyl-4-hydroxyphenyl propionic acid methyl ester (*Degradation product of Irganox 1010 / Irganox 1076*)

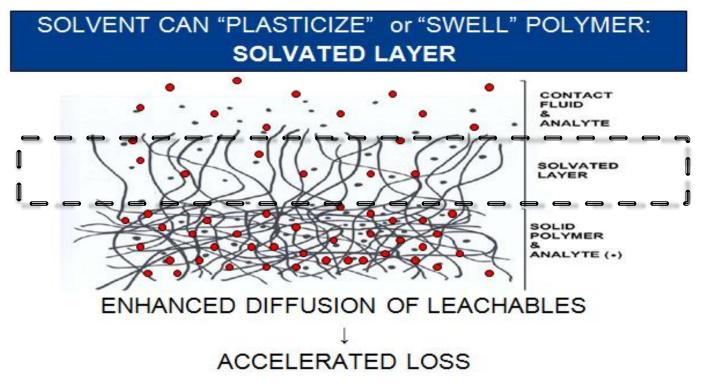


5. Contact fluid / environment

Two Important aspects:



- 5. Contact fluid / environment
- 1. Solubility of the leachable in the contact fluid


In general for most organic compounds:

Organic / hydrophobic contact solutions = HIGH SOLUBILITY solvents WFI/hydrophilic contact solutions = **LOW SOLUBILITY** solvents

- 5. Contact fluid / environment
- 2. Interaction of the contact fluid with the polymer

OVERVIEW

- 1. Fabes model a descriptive approach
- 2. Factors affecting leaching
 - Solubility of a leachable in a polymer
 - Diffusion of a leachable through a polymer
- **3. Application specific effect**
 - Supersaturation
 - Outgassing
 - Blooming

3. APPLICATION SPECIFIC EFFECT

1. Supersaturation

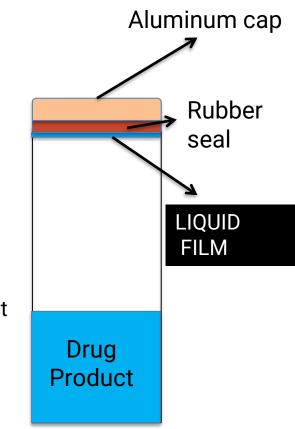
LIQUID FILM is formed via

- Evaporation during storage
- o Transportation

Film may be different in composition than the DP

Diffusion of rubber compounds into small volume

- Metals
- o **Organic**

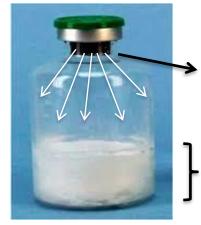

Can cause aggregation, particle formation

May be irriversible

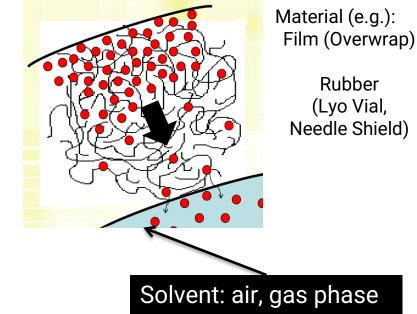
 Particles do not dissolve anymore when in contact with the total DP volume

LIQUID FILM may also act as "barrier"

- o for migration
- for outgassing (see next slide)



3. APPLICATION SPECIFIC EFFECT


2. Outgassing

OUTGASSING of RUBBER CLOSURE

Lyo Cake = adsorbent

No "Liquid Film" barrier on rubber (see previous slide)

Outgassing is mainly an issue for:

- Volatile organic compounds
- Semi-volatile organic compounds

3. APPLICATION SPECIFIC EFFECT

3. Blooming

What is it?

- Blooming is a physical phenomenon
- Observed in polymers which are (super)saturated with additives
- A process of diffusion controlled migration of additives from the polymer
- Typical for additives with **low solubility** & **high diffusion rate**

Typical conditions when blooming occurs

- Low solubility of the additive in the polymer
- **High diffusion** of the additive through the polymer
- Dosing of the additive into the polymer close to the solubility of the additive in polymer
- Low temperature applications may accelerate blooming process (lower solubility, but also lower diffusion...)

QUESTIONS?

pda.org

