Container Closure Integrity: Regulations, Test Methods, Application - Test Methods: Overview

Instructors Coralie Richard, Ph.D.; Eli Lilly and Company; coralie.richard@lilly.com Allison Dill, Ph.D.; Eli Lilly and Company; dillal@lilly.com

With significant contribution from Dr. Dana M. Guazzo PhD, RxPax, LLC, dguazzo@rxpax.com

Basel, Switzerland, May 31 – June 1, 2022

Introduction

Leak Test Methods Discussed in USP <1207>

- Described in relevant peer-reviewed publications
- ASTM test with supportive precision and bias data
- Significant variation w/in technologies is seen among vendors
- Other methods not included may be acceptable
- No method is appropriate for all product-packages
- All methods are valuable when used appropriately

- Leakage event: Stochastic in nature
 - Relies on a series of sequential and/or simultaneous events each associated with uncertainties
 - Results are associated with random outcomes (probability distributions)
 - Some uncertainty in findings

• Examples:

- Microbial challenge tests
- Bubble emission tests
- Tracer liquid tests (either qualitative or quantitative measurement)
- Tracer gas tests by sniffer probe
- When detecting leaks near the detection limit, or rarely occurring leaks
 - Large sample sizes required
 - Rigorous test condition controls needed
- More difficult to design, develop, validate, implement
- Test sample preparation required

Deterministic Leak Test Methods

- Leakage event: Follows a predictable sequence
 - Gas movement through an open leak path (at specific delta pressure or partial pressure)
 - Liquid presence near or in a leak path
- Examples:
 - Tracer gas (vacuum mode)
 - Laser-based gas headspace analysis
 - Pressure / Vacuum decay
 - Mass extraction
 - Electrical Conductivity and Capacitance Test (High Voltage Leak Detection)
- Leak Detection
 - Based on physicochemical technologies readily controlled and monitored
 - Objective, quantitative data

pda.org

Deterministic Leak Test Methods

- Little or no test sample preparation
- Reliable detection of leaks at the detection limit or rarely occurring leaks
- Less difficult to design, develop, validate, implement

Deterministic or Probabilistic?

- Deterministic
 - For determining inherent CCI via definitive results
 - When a compatible method exists for a given product-package
- Probabilistic
 - When deterministic methods are incompatible with productpackage
 - When a specific method outcome is required, e.g.,
 - Leak location detection
 - Microbial grow-through check

- Bubble Emission
- Microbial Challenge by Immersion Exposure
- Tracer liquid detection (Dye Immersion
- Tracer Gas Detection (Sniffer Mode)

Requirements:

Package

- Nonporous, rigid
- Porous material require masking to limit airflow through material
- Flexible or non-fixed components may employ optional restraint mechanism
- Must tolerate submersion or surfactant wetting
- All types of vials, bottles, syringes, blisters, pouches, bags, etc.
- Small volume generally (< few liters)
- Plastics (with limited helium permeability), glass, metal
- Rigid to flexible to non-fixed components (restraint mechanism may be desirable)

Application:

- Packages must be able to tolerate submersion or wetting (immersion tests).
- Gas or liquid must be present and be able to migrate through leak path; product, debris, or air locks can block leak path.
- Test fixture or restraint mechanism at test sample site of contact may block leak path.
- Outgassing of sorbed gas on test sample surface (helium tracer test) or release of entrapped air pockets (bubble emission test) may falsely simulate leakage.
- Several minutes to weeks per test sample.

Destructive (most probabilistic methods):

- Internal pressurization results in test sample barrier breach
- Submersion or surface wetting is destructive to test samples

Detection Limit: Varies with

- Leak size, type, length, blockage
- Package material of construction, flexibility
- Challenge conditions, including time, pressure, sample positioning, immersion fluid surface tension and gas saturation
- Inspection conditions and operator technique/skill

Detection Range: $\leq 0.01 \ \mu m$ (tracer gas); 6-20 μm (all others) may be possible

Reported Usage:

- Bubble Emission
 - Gas must be present at leak site
 - Best used for testing empty packages to prevent clogging of leak site
- Microbial Immersion
 - Unless the product itself is growth-supportive, test samples are not filled with product
 - Substitute product with sterile growth media
- Dye Immersion
 - Ingress Test test samples are filled with placebo unless the product itself is compatible with tracer liquid
 - Egress Test test samples are filled with tracer liquid
 - Subject to visual inspection if applicable
- Tracer Gas (Sniffer Mode)
 - Tracer gas must be present at leak site
 - Best used for testing empty packages to prevent product contamination of gas analyzer and test probe

Bubble Emission Test

- **Detection:** Bubble emission at leak site
- Technology:
 - Qualitative measure by visual inspection of bubbles escaping test sample while sample is submerged and subject to differential pressure
 - Alternatively, sample surface may be coated with surfactant; leakage evidenced by foaming
 - Outcome judged by operators trained using no-leak and with-leak controls; indicates leak presence, location and relative size

Bubble Emission Test

- Test (Internal Pressurization): ASTM F2096
 - Insert positive pressure source with monitor into test sample.
 - Submerge test sample in water; apply air to target pressure; hold for predetermined time.
 - Observe for continuous stream of bubbles.
- Test (External Vacuum): ASTM D3078
 - Submerge test sample in water or other suitable fluid in vacuum chamber.
 - Evacuate chamber to target pressure; hold for pre-determined time.
 - Observe for continuous stream of bubbles.
- Test (Alternative to Submersion):
 - Apply surfactant to test sample surfaces. Observe for foaming.

Bubble Emission Test

- Application:
 - Submersion liquid boiling under vacuum may mask leakage
 - Used in all product life-cycle phases, often as a leak forensics test. Not recommended for inherent CCI verification
 - Off-line test; On-line testing used for aerosol products
 - Several minutes per test sample
- Detection Range: 20 µm to mm may be possible
- Destructive

Example of bubble leak test (Package restraint may be preferred)

Surfactant solution used at suspected leak site

COPYRIGHT © PDA 2018

Microbial Challenge by Immersion Test

• **Detection:** Microbial growth in test sample resulting from passive ingress or active growth

Technology:

- Qualitative measure by visual inspection of microbial growth inside incubated test samples filled with growth-supportive media or product, post immersion in heavily contaminated challenge media over a pre-determined challenge time.
- Pressure and/or temperature cycling may be used to encourage ingress.
- Outcome judged by visual inspection by trained operators; verified by other analytic means.
- Outcome indicates presence of leak path(s) capable of allowing passive or active microbial entry.
- Requirements:
 - Product must be supportive of microbial growth; otherwise, test samples must contain sterile growth supportive media.
 - Test sample headspace must include gas appropriate for microbial growth (e.g., oxygen for aerobic microorganisms).

Microbial Challenge by Immersion Test

- Test:
 - Fill test samples with sterile media (growth support capability must be verified). Incubate and inspect to confirm test sample content sterility.
 - Immerse test samples in media concentrated with challenge organisms for pre-determined time.

Recommendation: Cycle pressure and/or temperature conditions and extend exposure time to encourage entry.

- Remove and clean test samples. Incubate under growth-promoting conditions.
- Examine test sample contents for evidence of growth by visual or other means. Compare to test sample blanks and no-leak/with-leak controls.
- Detection Range: 20 µm to mm may be possible
- Destructive

Microbial Challenge by Immersion Test

- Application:
 - Liquid must fill leak path to allow microbes to be mechanically swept in (passive entry) or to allow microbial growth into package (active entry).
 - Debris or air-locks in leaks will prevent microbial ingress.
 - Off-line test, although often used as part of aseptic processing validation runs to verify processing conditions.
 - Generally used in R&D to check inherent CCI (only recommended if deterministic methods are not applicable).
 - Weeks per test sample.

- **Detection:** Tracer liquid migration into (or out of) test sample
- Technology (Qualitative Measurement):
 - Visual inspection of tracer liquid inside test samples post immersion in tracer liquid while exposed to differential pressure conditions over a pre-determined time
 - Alternatively, test samples may be filled with tracer liquid and submerged in tracer-free fluid
 - Outcome judged by trained operators using blank standards and no-leak/with-leak controls
- Technology (Quantitative Measurement):
 - Appropriate analytical means (e.g., UV/Vis spectrophotometry for dye tracer) of test sample contents post immersion, as above
 - Alternatively, tracer-free submersion fluid is analyzed for tracer
 - Outcome judged by appropriate analytical means, versus blank solution standard and no-leak/with-leak controls
- **Outcome:** Indicates presence of leak path(s) capable of allowing tracer liquid entry

- Requirements:
 - Liquids If used, product must be compatible with tracer liquid; otherwise, test samples are to contain placebo solution.
 - Powders Product must be compatible with tracer liquid. For smallest leak detection powders will required constitution with tracer-free liquid for analysis or inspection.
- Test (Tracer Ingress):
 - Immerse test samples in tracer liquid for pre-determined time and temperature.
 - Remove and clean test samples. Control and limit time to inspection.
 - Examine test sample contents for evidence of tracer liquid by visual or analytical means.
 Compare findings to test sample blanks, no-leak and with-leak controls.
- Test (Tracer Egress):
 - Fill test samples with tracer liquid.
 - Immerse test samples in tracer-free liquid for pre-determined time and temperature.
 - Examine immersion liquid for evidence of tracer liquid by visual or analytical means
 Compare findings to test sample blanks, no-leak and with-leak controls.

Recommended for Both Methods:

- Minimize volume of tracer-free liquid per test sample. Liquids should be clean and of low surface tension.
- Cycle temperatures and/or pressure conditions and extend exposure time to encourage tracer migration.
- Control/limit time and conditions of sample storage prior to examination.
- Application:
 - Off-line test.
 - Used in R&D or stability to check CCI (only recommended if deterministic methods are not applicable). May be used in package forensics analysis.
 - Minutes to hours per test sample.

- **Detection Limit:** Varies with:
 - Leak size, type, length, material of construction, blockage.
 - Tracer concentration, surface tension, cleanliness.
 - Tracer compatibility with product (ingress test) or immersion fluid (egress test).
 - Challenge conditions of time, temperature, pressure, sample positioning.
 - Inspection conditions and operator training/skill.
 - Analytical detection sensitivity and test sample preparation.
- **Detection Range:** 6-10 µm to mm may be possible
- Destructive

Tracer Gas Detection (Sniffer Mode)

- **Detection:** Tracer gas leakage rate in mass flow units
- Technology:
 - Quantitative measure of tracer gas leak rate from a gas-charged test sample into the atmosphere captured using a sniffer probe connected to a spectroscopic analyzer.
 - Output analyzed by spectroscopic means.
 - Leak rate above a baseline pass/fail limit indicative of leak presence and relative size.
 - Calibrated leak standards used to verify method accuracy and reliability.
- Test:
 - Flood tracer gas into test sample. Use tooling to restrain and/or compress flexible package or package with non-fixed components as required.
 - At test start, scan test sample surfaces with sniffer probe connected to spectroscopic analyzer specific for tracer gas (for Helium: Mass spec analysis).
 - Gas mass flow rate is continually reported. Reading above a pre-determined baseline is indicative of leak presence (pass/fail test). Reading magnitude may correlate to relative leak size.

pda.org

Tracer Gas Detection (Sniffer Mode)

- Application:
 - Best performed on empty test sample product drawn into analyzer or probe may damage instrument.
 - Used in all product life-cycle phases, but not recommended for inherent CCI verification.
 - Useful for leak forensics analysis.
 - Generally performed off-line.
 - Requires minutes per test sample.
- **Nondestructive:** If tracer gas introduction into test sample poses no threat to product sterility/quality
- Detection Limit:
 - Tracer gas permeation through package may be mistaken as leakage
 - Tracer gas background in testing environment can influence test results
 - Varies with operator technique and sniffer probe design
- **Detection Range:** $\leq 0.01 \ \mu m$ to mm may be possible

Tracer Gas Detection (Sniffer Mode)

MD-490S Helium/Hydrogen Leak Detector - VIC Leak Detection

Helium Sniff Test Application

COPYRIGHT © PDA 2018

pda.org

COPYRIGHT © PDA 2018

pda.org

- Objective:
 - Compile classification and summary table detailing the key attributes of each CCI test methodology.
- Instructions:
 - Each team will be assigned one CCI test method to evaluate.
 - Team will work as a group to classify the test method and identify the following:
 - Test method classification: deterministic v. probabilistic, destructive v. non-destructive, qualitative v. quantitative
 - Best case limit of detection achievable
 - Applicable product life cycle phase(s)
 - Major advantages and limitations
 - Any key considerations
 - Each team will present findings in the morning of Day 2.

Applications for Each CCI Technique

- Verify MALL (0.3um or smaller)
- Lot release (based on sampling plan)
- In-process at-line testing (based on sampling plan)
- 100% In-line inspection
- Stability sample testing
- Media-filled run samples

Test Method	Technology Classification	Limit of Detection	Applications	Major Advantages	Major Limitations	Key Considerations
Tracer Gas (helium) in Vacuum Mode						
Vacuum/ Pressure Decay						
Mass Extraction						
Laser-based Headspace Analysis						
High Voltage Leak Detection						

Test Method: Dye Ingress/ Microbial Immersion

Technology	Limit of	Applications	Major	Major	Key
Classification	Detection		Advantages	Limitations	Considerations
 Probabilistic Destructive Qualitative 	20μm - 50μm	• Routine QC testing	 Applied for decades Familiarity "Last resort" when all else fails 	 Reduced sensitivity Destructive Detection is probabilistic 	 Potential identification of defect location

Appendix I

Comparison of Tracer Liquid Test Methods

COPYRIGHT © PDA 2018

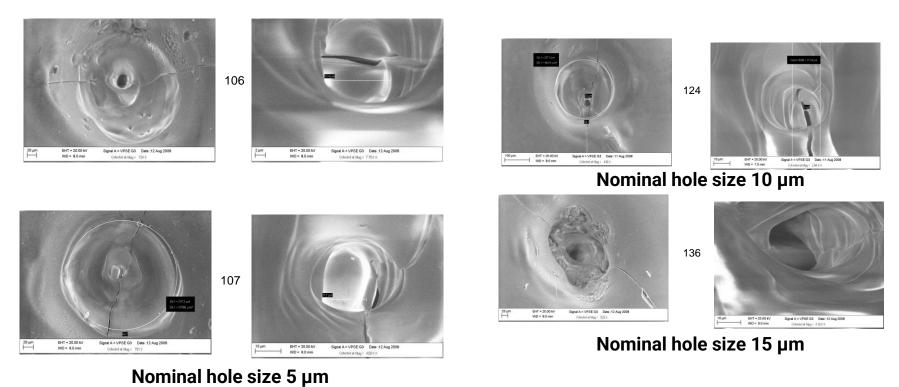
pda.org

Closure Re-seal Method Parameters	USP 31 <381> Ph. Eur. 3.2.9	ISO 8362-5 Annex C	ISO test modified to maximize sensitivity		
Dye	0.1% aq. Methylene Blue				
Vacuum	-27 KPa -25 KPa		-37 KPa		
Time at Vacuum	10 min	10 min 30 min			
Time at Ambient	30 min 30 min 30 min				
Detection method	Visual inspection				

Test samples

BD Glass Syringes

- 1mL volume
- Staked Needle
- Water-filled



- Inspector Qualification Study
 - Test Samples
 - 1mL water-filled syringes WITH and WITHOUT methylene blue
 - Known (-) controls for comparison
 - Logistics
 - 3 Test sites, 3 Inspection stations, 10 Inspectors
 - 10 sec pacing, randomized, blinded
 - Inspection stations varied: lighting type, intensity, position, background angle and position
 - Results
 - Detection limit varied from 0.2 to 0.5 ppm

Glass Syringe Defects by Lenox Laser

PDDA Parenteral Drug Association

	Test Samples	USP/Ph.Eur. Dye Test (-27 kPa 10 min, amb 30 min) YES (Dye visible) or NO (Not visible)			
		Inspector 1	Inspector 2	Inspector 3	
-	Negative Controls	No	No	No	
		No	No	Νο	
		No	No	Νο	
		No	No	Νο	i
		No	No	No	
Probabilistic	5 µm	No	No	Yes	
		No	Yes	Yes	
look toot		No	Yes	Yes	
leak test		No	No	No	
		No	No	Yes	
methods	10 µm	Yes	Yes	Yes	
methous		Yes	Yes	Yes	
		Yes	Yes	Yes	(
		No	No	Yes	
-		No	No	No	i
	15 µm	No	No	Yes	
		Yes	Yes	Yes	ł
		Yes	Yes	Yes	5
		Yes	Yes	Yes	
		Yes	Yes	Yes	

5 µm

15 µm

USP/Ph. Eur. Dye Ingress Test Samples

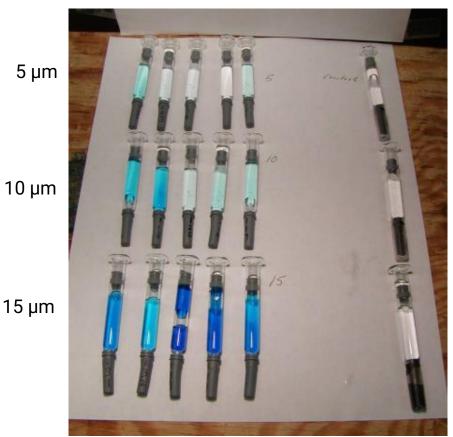
10 µm

H. Wolf, T. Stauffer, S-Chen Chen, et al, PDA J Pharm Sci & Technol., <u>63</u>, 2009, p. 489 - 498

pda.org

PDDA® Parenteral Drug Association

	Test Samples	ISO Dye Test (-25 kPa 30 min, amb 30 min) YES (Dye visible) or NO (Not visible)		
		Inspector 1	Inspector 2	Inspector 3
	Negative Controls	No	No	No
		No	No	No
		No	No	Νο
		No	No	Νο
Drobobiliotio		No	No	No
Probabilistic	5 µm	No	No	No
		No	No	Yes
leak test		No	Yes	Yes
ισακ ισδι		No	No	Yes
1 A A A A A A A A A A A A A A A A A A A		No	No	No
methods	10 µm	Yes	Yes	Yes
methodo		Yes Yes	Yes Yes	Yes Yes
		No	No	Yes
		No	No	No
	15 µm	Yes	Yes	Yes
		Yes	Yes	Yes
		Yes	Yes	Yes
		Yes	Yes	Yes
		Yes	Yes	Yes



PDDA® Parenteral Drug Association

	Test Samples	MODIFIED ISO Dye Test (-37 kPa 30 min, amb 30 min) YES (Dye visible) or NO (Not visible)			
		Inspector 7	Inspector 8	Inspector 10	
	Negative	No	Yes	No	
	Controls	No	Yes	No	
		No	No	Yes	
		No	Yes	Yes	
Probabilistic		Yes	No	No	
Propapilistic	5 µm	Yes	Yes	Yes	
		Yes	Yes	Yes	
leak test		Yes	Yes	Yes	
ican icsi		Yes	Yes	Yes	
		Yes	Yes	Yes	
methods	10 µm	Yes	Yes	Yes	
		Yes	Yes	Yes	
		Yes	Yes	Yes	
		Yes	Yes	Yes	
		Yes	Yes	Yes	
	15 µm	Yes	Yes	Yes	
		Yes	Yes	Yes	
		Yes	Yes	Yes	
		Yes	Yes	Yes	
		Yes	Yes	Yes	

Modified ISO - Dye Ingress Test Samples

Negative Controls

Compendial and ISO dye ingress methods

Summary

- Inspector capabilities varied
- Visual inspection conditions not defined
- All methods lacked sensitivity, reliability for smallest leaks
- The 'optimized' ISO method resulted detected more leaking packages, but greater number of 'good' syringes were falsely reported as leaking
- Other disadvantages
 - False negative risks
 - Proteins, salts, etc. clog leak paths, inhibiting dye ingress
 - Dye dilution in larger volumes
 - Dye may fade over time
 - False positive risks
 - Inspector error
 - Sample contamination (if analytically analyzed)
 - Destructive method

Dye test used for seal gap check

