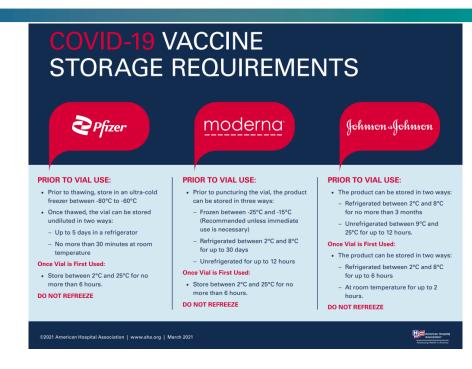
Case Study: Systemic Evaluation of Vial Container Closure System Suitability at Frozen Conditions

- Coralie Richard, Eli Lilly and Company
- With Significant Contribution from Peter Sargent, Eli Lilly and Company

Agenda

- Background
- Risk Assessment
 - Suitability Hazards
- Phase based strategy
 - Screening Assessment
 - Development
 - Scale Up
- Takeaways


Background

Evolving needs for deep frozen storage

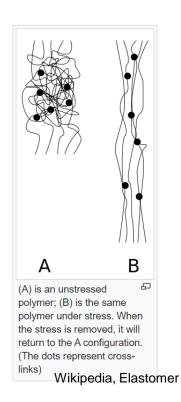
- Cell/gene therapies
- Vaccines

Opportunies for extended expiry

- Increased protein stability for biologics
- Establish shelf-life with limited stability knowledge

Risk Assessment: Suitability Hazards

Protection Risk


- Loss of elastomer elasticity below Tg
 - · Sealing failures are temporary
- Increased risk for breakage due to liquid expansion

Performance Risk

- Mechanical/thermal stresses of shipping
- Thermal stresses of processing streams
- In-use performance after thaw

Safety & Compatibility

Frozen conditions favorable for DP stability and E/L

Risk Assessment: Phased Approach

Stage Description	Screen	Confirm	Develop	Scale Up	
Activities	Form/Fit ConcernsFinite Element Analysis	In-Use conditionsCT X-RayInherent Leak(HeLD)	Head Space AnalysisStabilityShipping Hazards	Process Mapping Structural Integrity	
Phase	Ph 1/2				
	Ph 3/ Primary Stability				
Focus	Design and Systemic Risk with Focus on Patient Safety Process Suitability and Business Risk				

- Right size the approach
- Gate transitions between phases
- Expand the system boundaries

Risk Assessment: Phased Approach

Screen for Form/Fit issues at 'standard' conditions

- Machinability studies
- Stacked Tolerance Analysis

Confirm & Develop frozen use conditions

- Identify lower temp. bound in storage and shipping
- Understand supply chain risk points
 - Impact of Shipping Hazards
 - Temperature transitions

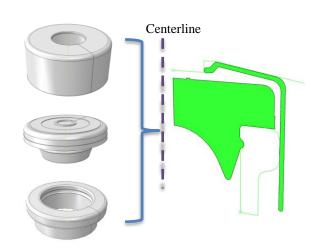
Apply a world view in the scale up process

- Transition to outcomes thinking
- Propagation of stresses means propagation of risk

Screening: CAE

Characterize component Materials of Construction as inputs to computer aided engineering and modelling

<u>Vials</u>

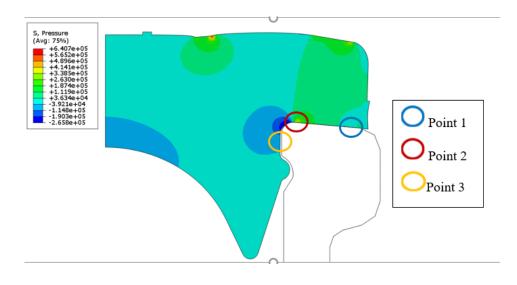

Assumed to be a rigid body

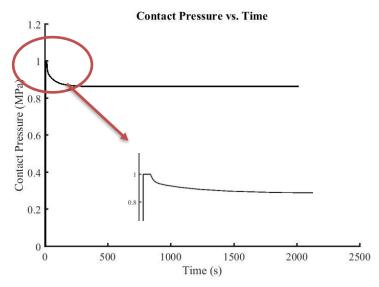
Elastomer

- Viscoelastic characterization > T_g
- Elasto-plastic characterization < T_q

<u>Seals</u>

- T_g
- CTE
- Poisson



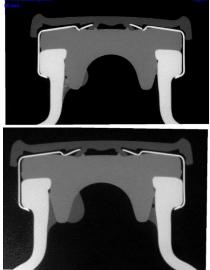


Screening: CAE

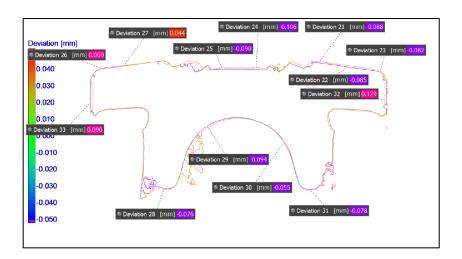
Evaluate contact pressure

- Include lower temperature bound
- Consider shelf life

	Contact pressure (MPa)	Contact force (N)
Maximum	1	25.7
Relaxed	0.864	22.2

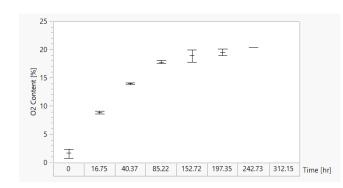


Development: CT Imaging


Confirm modeling assumptions via CT x-ray

Look for variance between normal conditions and frozen

Frozen



Development: CCI

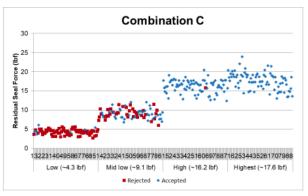
Inherent Leak Rate

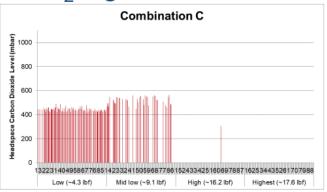
- Conduct as guided by USP <1207>
- Conduct at temperature via HELD
- Focused on design risk

Headspace Analysis

- Allows for CCI evaluation at in-use conditions
 - Incorporates temperature
 - Apply known shipping & shelf life constraints

- -78 °C, headspace underpressure
- Stopper loose elasticity, interface gaps
- CO₂ in headspace
- Warm up, stopper reseals
- CO₂ trapped


Development: Seal Quality Test


Developing a Readily Available Primary Packaging System for Use in an Ultra-Cold Chain for COVID19 Vaccine Global Distribution – Using a Scientific Approach

Co-presenters: Michael Edey, Pfizer Derek Duncan, Lighthouse Instruments

2021 PDA Parenteral Packaging Conference

Combination C: RSF and CO₂ ingress results

- Vial-stopper combination C: 1 week storage at -80 C in a CO₂ rich environment
- 73 of 80 samples (lowest capping setting) 38 of 80 samples (mid low capping setting), and 1 of 80 samples (high capping setting) measured increased CO₂ levels, indicating loss of CCI during cold storage

Scale Up: Approach

Shift the focus from systemic to residual risk

- Transition from design → process
- Emphasize control strategy development
 - Consider incoming, filling, and transit
 - Incorporate 2° packaging?
- Employ statistical powering

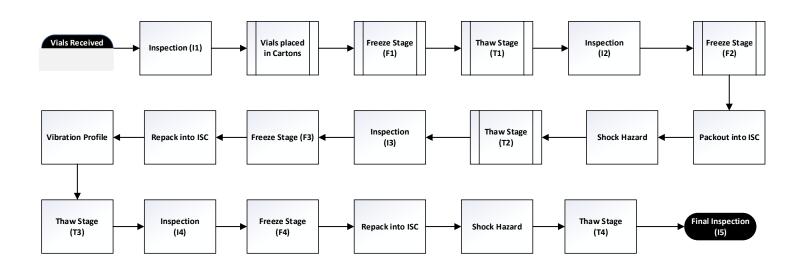
Scale Up: Structural Integrity

Hazards

- Liquid expansion at phase change
- Freeze/thaw at shipping nodes
- Mechanical stresses
 - Vibration and Drop during shipment
 - · Glass to glass contact at filling

DOE considerations

- Storage Temperature/orientation
- Shipping conditions: temperature, method, e.g. dry ice
- Fill volume, CCS size
- Best outputs (RSF, CCI)



Scale Up: Process Mapping

Process Mapping

- Understand temperature transitions
- Build in high-volume production hazards
- Adopt a statistical approach and foundation

Takeaways

- Risk Assessment Strategy
 - Use a right sized, phase approach
- Screen
 - Design and Systemic Concerns
 - Is it possible?
- Confirm and develop
 - Establish baseline suitability
 - Focus on the destination
- Scale up
 - Expand the system boundary for risk
 - Focus on the journey

Acknolwedgments

- Craig Kemp
- Craig Goldhammer
- Lin Li
- Michael Foubert
- Vijay Sharma

- Lei Li
- Mark Beidelschies
- Michael Boquet
- David Lyngholm

