All about Pre-filled Syringe Systems From Initial Development to Final Fill Finish Christa Jansen-Otten

Basel, June 31st and Mai 1st 2022

Agenda – DAY 2

The "Ready-to Fill" Syringe

Material • Shape • Properties • Siliconization • Impact of different drug • Nest and Tub • Needles and LL • backstops • Rods • Regulatory Guidelines

Plunger Stoppers, Needle Shields, Tip Caps

Materials • Properties • Functionality • Production • Extractables • Regulatory

Manufacturing Aspects in Fill & Finish and Assembly

Bulk versus Nested • Nest Sizes • Rod insertion • Handling of Syringes, Labeling • Glass to Glass Contact

Assembly of Syringes and Administration Devices

Pen Injectors • Safety systems • Autoinjectors • Manual vs Automated

Design Independent Assembly

Hands-on Session 2, Mind map, Lottery

Syringe Components

Considerations in Selection of PFS Components

			22	
COMPATIBILITY WITH DRUG	APPLICATION – MANUAL OR AUTO SYSTEM	CONTAINER CLOSURE INTEGRIETY (CCI)	QUALITY SPECIFICATIONS	FINISHIING
 Type of drug pH Viscosity Excipients 	 Break loose & glide force requirements Accuracy of delivery volume 	 Interference fit of plunger with barrel Sealing ribs and their function Preservation of drug potency and sterility 	 Particulate level visible & sub- visible Dimensional control Endotoxin level Bioburden level Visual defects 	 Mode of sterilization Lubricity Consistency
-	-	-	-	-

Customer Impact - Demands on Packaging Components are Increasing

- Particulate reduction/foreign matter
- **Oncerns regarding extractables/leachables**
 - Ultra-clean components needed
 - New ways to deliver medicine

Functional performance of components

- High-speed lines
- Complex devices

New manufacturing approach

- Flexibility
- Time to market
- Total cost of ownership (TCO) focused
- Brand differentiation critical

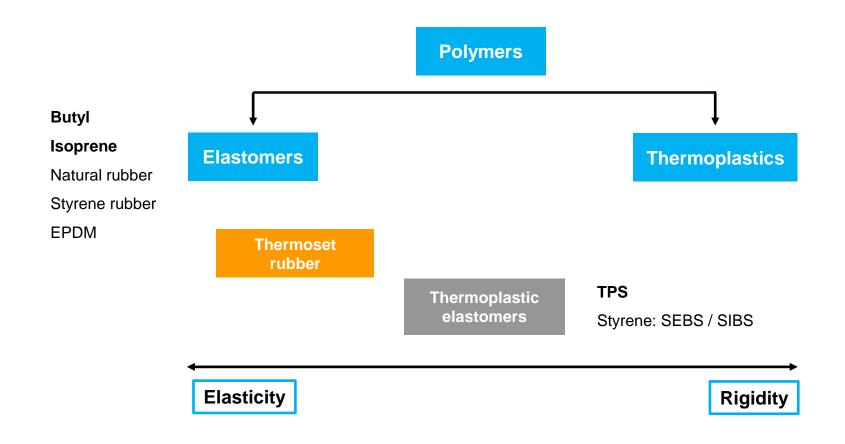
Rubber material

COPYRIGHT © PDA 2018

Why Use a Rubber Material?

Sealing properties that maintain container – closure seal integrity over time

Physically and chemically compatible with different sterilization methods


Different range of material permeability

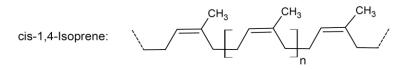
Compatible in long-term contact with drugs

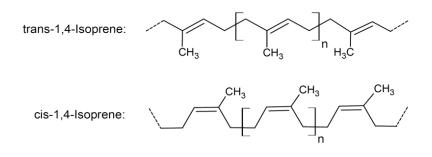
Wide range of product designs

Polymers: thermosets and thermoplastics

- Halobutyls:
 - Chlorobutyl
 - Bromobutyl
- Butyl
- Synthetic Polyisoprene
- Dry Natural Rubber [DNR]: Not recommended for new applications

If you need an elastomer for special applications such as oily solutions, please refer to your supplier for special formulation offerings

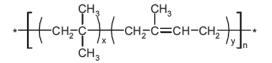




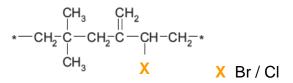
Natural rubber (NR)

- Based on latex of Hevea Brasiliensis
- High Mw & broad Mw distribution
- >99.5 % cis-1,4 content
- Excellent mechanical properties e.g. fatigue, elasticity, abrasion
- High permeability
- Latex Allergy Concerns / cytotoxicity

Synthetic polyisoprene (IR)



- Blend of cis-1,4, trans-1,4 and 3,4 vinyl polymer
- Lower elasticity and tear resistance than NR
- High permeability
- Poor resistance to ozone and many organic solvents



Butyl (IIR)

- Low permeability
- Good heat resistance
- Good ozone resistance
- Resistance to acids, bases and other chemicals
- A low level of impurities
- Limited radiation resistance (< 25kGy gamma)
- Slow crosslinking because of its low unsaturation

Halobutyl (BIIR / CIIR)

- Greater crosslinking activity
- BIIR has greater cure activity than CIIR (C-Br bond weaker than C-CI)
- BIIR has higher cure versatility than CIIR
- BIIR less sensitive to compounding variables e.g. water
- BIIR stabilizers ESBO (Epoxidized Soy Bean Oil) & calcium stearate, CIIR calcium stearate

- Elastomer
 - Oligomers, Calcium Stearate, Antioxidant (BHT etc.), Epoxidized Soybean Oil, Halide ions
- Filler & Pigments
 - Metallic lons
- <u>Cross-linking system</u>
 - Sulphur, Phenolic resins, Metallic Ions i.e., Zn, Peroxides
- Plasticizer (Silicone oil, Wax, Oils)
- <u>Reaction-by products</u>
- <u>Processing aids</u> (Rubber closure, Raw materials)

 \rightarrow Ask your supplier for potential extractable lists

Elastomeric Formulations for Pharmaceutical Use

Properties Polyisoprene

- Good permeability rates towards moisture and gases (ETO)
- Cleanliness, drug compatibility
- Low fragmentation / coring
- High elasticity
- Optimal penetrability
- Good resealing properties
- Sterilization: ETO, steam, gamma
- Ozone resistance (low cracking)*
- No blooming, no frosting*
- DNR, MBT, Nitrosamine free*

*only valid for Polyisoprene

Properties Butyls/Halobutyls

- Low permeation rates towards moisture and gases
- Cleanliness, drug compatibility
- Low fragmentation / coring
- High elasticity
- Optimal penetrability
- Good resealing properties
- Sterilization: steam, gamma

13

Potential Issues: Needle Shields and Tip Caps

Ozone Cracking

Frosting (Bloom)

Tip Caps, Needle Shields & Rigid Needle Shields Synthetic Isoprene Elastomer Formulations

<u>Typical modern rubber</u> <u>formulations</u>

- 7028/55 Gray
 - no ozone cracking observed
- 7025/65 Gray

Not made with natural rubber

Elastomer Physical Properties

What we Measure	Why it Matters
Hardness (Durometer)	Can affect physical attributes of the elastomer (coring, break loose and glide force, compression and CCI)
Crosslink Density (% Swelling)	Can predict gross compatibility issues (coring, break loose and glide force, compression and CCI)
Barrier Properties (O ₂ and Moisture)	Can predict the amount of gas transfer in a given thickness.
Compendia (USP, EP and JP)	Compliance
Identity Tests (Ash, Specific Gravity and IR)	Ash and specific gravity tell you that you have the right ingredients in the right ratios. Surface IR can identify surface treatments

Supporting Documents

COPYRIGHT © PDA 2018

Example of Supporting Documents

- Technical Bulletins and Reports
- Formulation Characteristics
- Technical drawings
- Elastomer Formulation Biocompatibility
- Theoretical Material Extractable List
- VeriSure[®] Extractable Technical Package
- Material Characterization Package
- Regulatory Compliance Bulletins
- Product Specifications

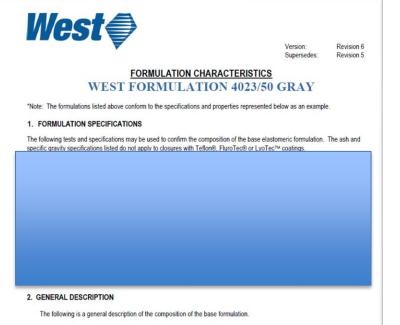
Confidential - West proprietary information

West Elastomer Formulation Biocompatibility

4023/50 Gray

FORMULATION CHARACTERISTICS WEST FORMULATION 4023/50 GRAY

Material Characterization for Elastomeric Formulation 4023/50 Gray


Executive Summary

Formulation Documents

Elastomer Type:
Reinforcement System:
Curing System:
D. N

Bromobutyl Inert Mineral Sulfur

West Elastomer Formulation Biocompatibility

Biocompatibility Profile 4023/50 Gray

Background. The purpose of a profile is to provide biocompatibility information on components to enable risk evaluations. Components tested for biological reactivity provide baseline information only, and final drug product packaging/delivery systems should be tested for suitability for use.⁹ Baseline biological reactivity information provided by West is useful for material selection. For the purpose of this profile, **base 4023/50 Gray formulation** data are presented.

Surface treatments, films, etc., are out of the scope of this document; however, they must be considered, as they also may be in contact with the drug product. Separate documents will be available for films. Additional components included in the packaging/delivery system (e.g., vial, needle shields), process (manufacturing equipment), and combination products (e.g., medical devices, such as West's SmartDose[®] and SelfDoseTM platforms, Daikyo Crystal Zenith[®] Syringes, and administration systems) will be addressed in separate Combination Product Biocompatibility packages if applicable and are out of scope of this elastomer formulation baseline data document.

Biocompatibility Results. The base 4023/50 Gray formulation is compliant with USP <87>, JP 7.03, and USP <88> biocompatibility requirements. Data are summarized below.

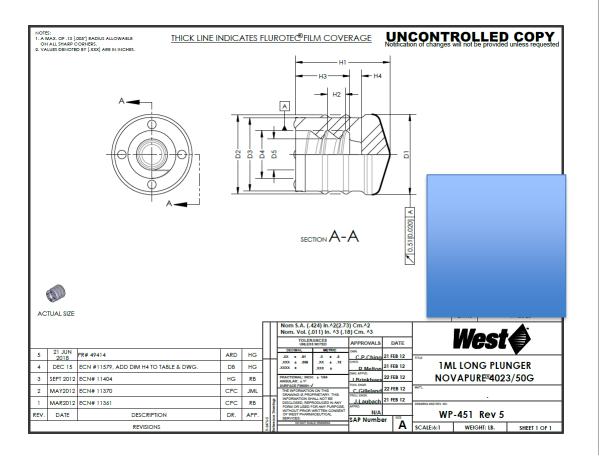
Formulation Documents

	est vices mana 0. West Private Strives, inc. 530 Herman 0. West Drive Exton, PA 19341 www.westpharma.com	Compliance Bulletin
_		Rev. 5
N	lest Item: 4023/50 Grey	
	TABLE OF CON	TENTS
1	INTRODUCTION	2
2	ANIMAL DERIVED MATERIALS	
3	HEAVY METALS	
4	NATURAL RUBBER LATEX/DRY NATURAL RUB	BER CONTENT 3
5	ADDITIVES OF CONCERN	
6	ROHS	
7	FOOD REGULATIONS	
8	PROPOSITION 65	
9	ELEMENTAL IMPURITIES	
10	HALAL	
11	KOSHER	6

By your side for a healthier world™

530 Herman O. West Drive • Exton, PA 19341 T: 610 594 2900 www.westpharma.com

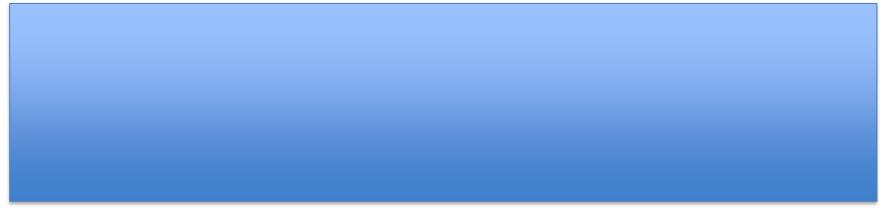
Theoretical Material Extractables List: 4023/50 Gray


Below is a summary of the potential chemical entities that could be extracted from West elastomer formulation 4023/50 Gray based on the materials that are used in the formulation. Since each drug application is unique, it is possible to form new reaction products from the closure or from a combination of the closure and the drug product components.



Examples of Uncontrolled Drawings

Rigid Needle Shields and Tip Cap

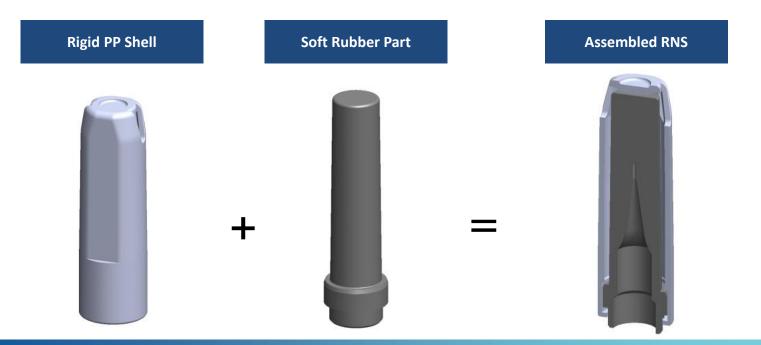


COPYRIGHT © PDA 2018

Pre-filled Head Designs ISO 11040-4 require different closure design solutions

Head design of glass barrel with a 6% Luer cone

Head design of glass barrel with a 6% Luer cone for Luer Lock (LL)


Head design of glass barrel with staked needle

West Rigid Needle Shields

Rigid Needle Shields [RNS] are a safe & efficient closuring system for Prefilled Syringes with staked needles

Design Examples of Rigid Needle Shields

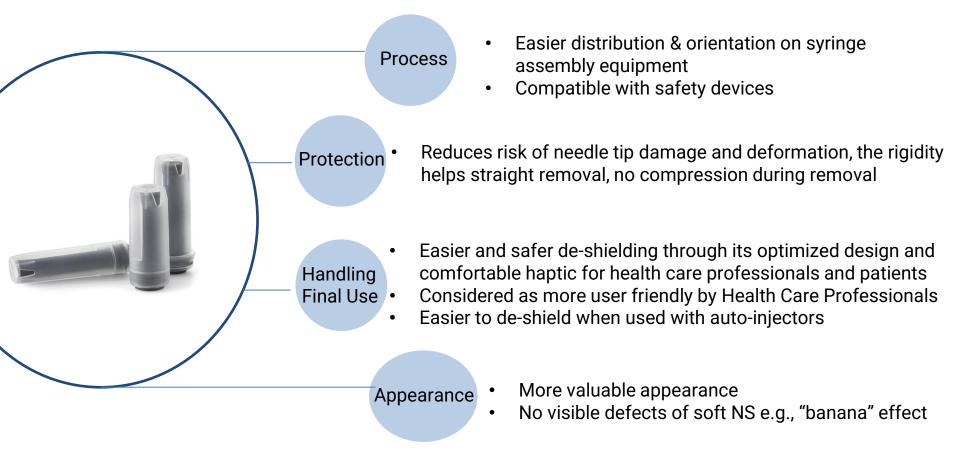
RNS ½" [13 mm]

Needle length used for subcutaneous drug injection (into the tissue layer between the skin and the muscle)

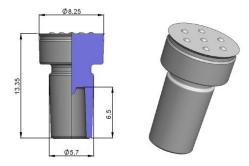
RNS %" [16 mm]

Needle length used for intramuscular drug injection (deep into the muscles)

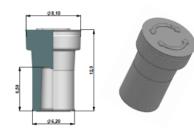
Solution


- Designed for existing assembly machine and filling equipment.
- Fits to ISO Norm 11040-4 glass syringe with staked needle
- Suitable also for polymer (e.g. COP) syringe
- Compatible with safety devices
- High gas permeation rubber formulation combined with sterilization windows of the rigid shell allowing effective sterilization by EtO or steam

Advantages of Rigid Needle Shields vs Soft Needle Shields



Rigid Needle Shields are the preferred closure for staked needle syringes



Example of various Tip Caps for Luer and Luer Lock Syringe

Tip Cap to be inserted a rigid plastic cap # 3155

Easy Turn Tip Cap # 3131

Mushroom Rip Cap # 3379

Multiple rubber formulation options (halobutyl and synthetic isoprenes)

Barrier Film & Coatings

COPYRIGHT © PDA 2018

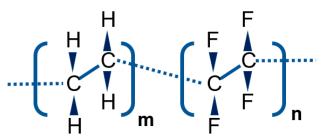
Films and Coating Technologies

Film – sheet (e.g., PTFE, ETFE) that is laminated to elastomeric component during the molding process

- Barrier function, e.g., FluroTec® film

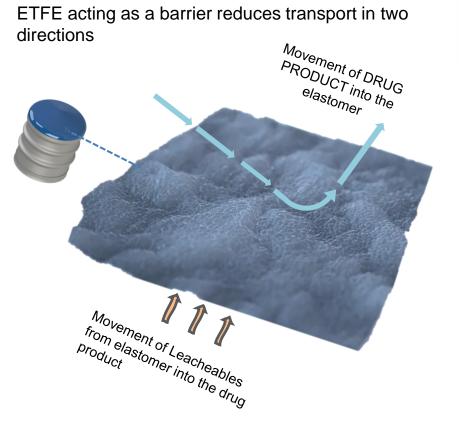
Coating – liquid or vapor that is sprayed, tumbled or vapor deposited onto the elastomeric component

- Lubricity, e.g., B2-Coating
- Lubricity and barrier function



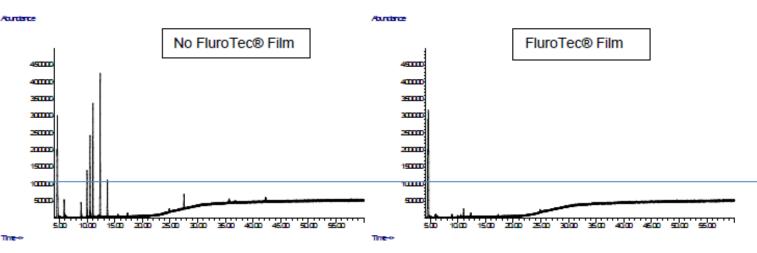
Film properties

The blue color indicates FluroTec[®] film


Structure of Poly(ethylene tetrafluoroethylene) (ETFE)

ſį.	FluroTec [®] film is
Θ	based on poly(ethylene tetrafluoroethylene)
•	smooth surface
•	very adherent to elastomers (either bromo- or chloro-butyl)
٢	translucent
•	compatible with sterilization by either: • autoclave • gamma irradiation
•	Applied during the compression molding process

Film has a low level of Interaction


ſį.	FluroTec [®] film
€	No reactive functional groups
•	chemically inert – mitigates chemical migration
•	resistant to degradation
•	supports reduction in absorbance

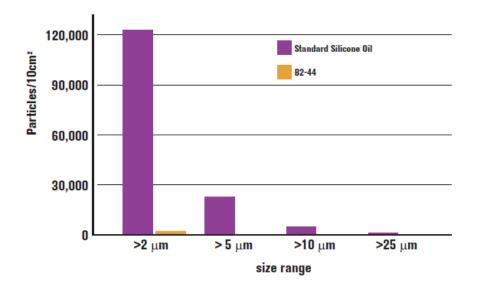
Very Low Surface Energy → Very Low Level of Interaction!

Fluoropolymer film coating Significantly Reduce Leachables

The drawn blue line indicates an estimated identification threshold of 0.5 μ g/unit, which is below the Product Quality Research Institute recommended safety concern threshold for parenteral drug products

Non-laminated elastomers showed approximately eight volatile organic compound (VOC) peaks estimated to be > 0.5 μ g/unit

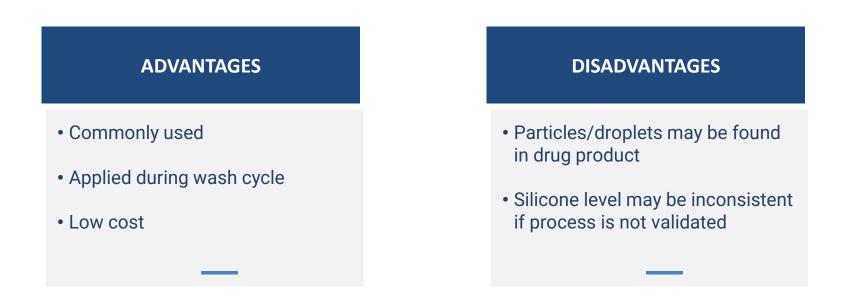
Elastomers with FluroTec[®] film did not show any peaks > 0.5 µg/unit [blue line]


Most marketed biopharmaceuticals use fluorpolymer-coated component technology (FluroTec® film)

Lubricity coating

B2-coating vs. Traditional Silicone Oil - Sub visible Particles -

rubber web		
	B2-Coating	
•	Cross-linkable high and low molecular weight polydimethylsiloxane coating	
•	Applied to the surface of rubber stoppers and syringe components	
()	Low levels of extractable silicone oil	
•	Reduced particulate count	
\bigcirc	Does not alter chemical and biological	
	stopper/plunger properties	
•	Enhanced machinability	


Study extract from Technical Report TR 2000/026 B2-Coating Quantitative Particle Analysis

Lubricity Coating: Classical Silicone Oil

<u>Polydimethylsiloxane</u> (DC 360 Medical Fluid) added during washing operation into the washing drum:

- 350 centistokes \rightarrow USA
- 1000 centistokes \rightarrow Europe

Plungers

COPYRIGHT © PDA 2018

Facilitating Life Cycle: Seamless Transition from Vial to Prefilled Syringe format

Main requirements for PFS Plungers

- Good break loose and glide forces
- Compatibility with the drug product
- Compatible with gamma-irradiation and final steam sterilization
 treatment
- Compatible with glass and plastic (COC/COP) barrels
- Good compression set properties

Fluropolymer Lamination on Drug Contact side

Plunger ISO 11040-5

Example of Prefilled Syringe - Plunger Portfolio at West

Plungers suitable for DIN/ISO 11040-4 Syringes

Size	Article	Recommended Rubber Formulation (Halobutyl) in combination with FluroTec® Film		
0.5 mL	2342	4023/50 grey B2		
1 mL Long	2340	4023/50 grey B2 and 4432/50 grey B2		
1 mL Long Nova	Pure [®] Plunger	4023/50 grey B2		
1 mL std.	2345	4023/50 grey B2 and 4432/50 grey B2		
1-3 mL NovaPure [®] Plunger		4023/50 grey B2		
5 mL	2346	4023/50 grey B2		
10 mL	Y-2667	4023/50 grey B2		

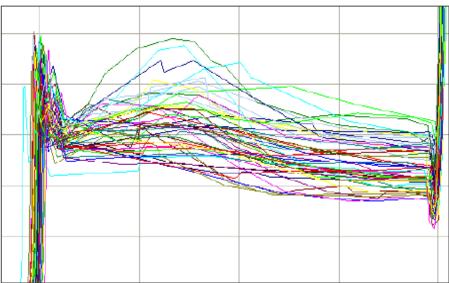
Size	Article	Available Rubber Formulation (Halobutyl)
0.5 mL	2211 and 2247	4023/50 grey and PH 701/50/C black
1 mL Long	2212	4023/50 grey and 4432/50 grey and PH 701/50/C black
1 mL std.	2116	4023/50 grey and 4432/50 grey and PH 701/50 C black

Plungers without coating (with silicone)

40

Fluoropolymer film

Majority of designs are customized


Plungers with film lamination and B2-Coating

Manual PFS to Auto-injector Challenges

Syringe functionality with high variability

Auto-injector Reliability Risks

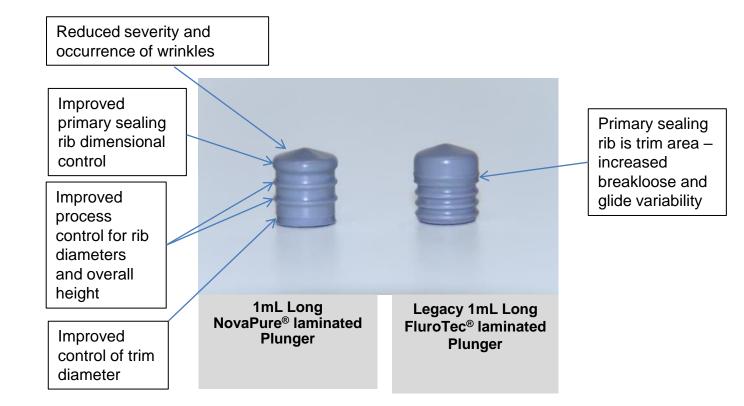
If injection times vary between doses with an auto-injector:

- > Patient may stop dose if too long
- > Patient may question quality of the product

Critical design factors must be considered, especially functional compatibility

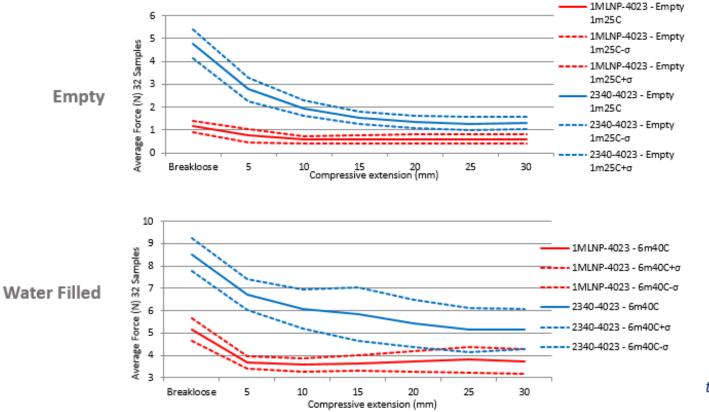
- > Break lose and glide forces (max/min)
- > Spring falling rate forces (max/min)

Market Requirements for plungers

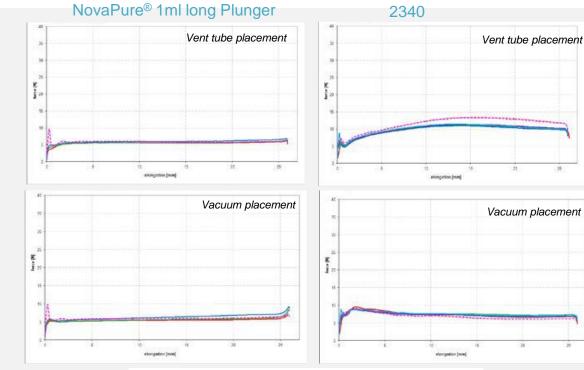


Minimize Overall Risk

High Cosmetic Quality


Design example: laminated Plungers

Performance: two different laminated 1 ml long Plungers


Extract of Study – technical report available

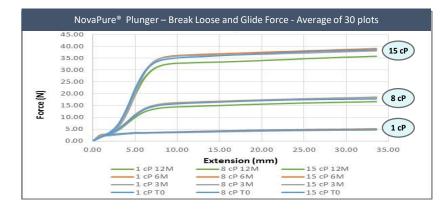
Ref.: TR 2013/147

Functionality 2340 vs. NovaPure® 1ml long Plunger

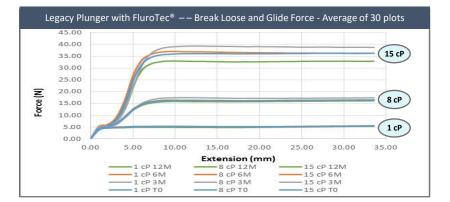
Mean force for different measurements (n=20 measurements each): **T0 (3 days), T1 (3 months), T2 (6 months), T3 (1 year), T4 (2 years) T1acc (3 months, 40°C, 75 RH), T2acc (6 months, 40°C, 75 RH) Figure 2: Comparison of plunger placement methods for FILLED Syringes**

Graphs courtesy of Gerresheimer.

NovaPure[®] plunger showed low break loose and glide forces with very consistent, smooth profiles and


Neither plunger placement method nor storage conditions have a determinable influence on the optimized break loose and gliding forces profile of 1ml long NovaPure[®] plunger

Meeting functionality requirement for use with auto-injectors and other medical delivery devices.



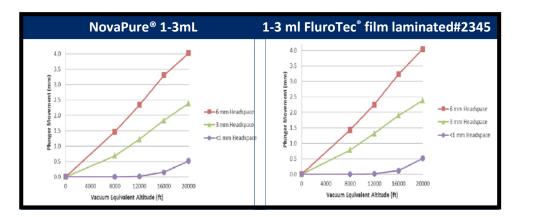
Break-loose and Glide Force - 1 ml Long Plungers Curves represent averages of 30 plots.

Time	Fluid Viscosity	NP Plunger Force [N]	Legacy Plunger Force [N]	% lower (with NP)
	1cP	1.63	3.68	55.8 %
то	8cP	1.77	4.23	58.2 %
	15cP	1.89	4.00	52.7%
	1cP	2.16	4.55	52.5 %
ЗМ	8cP	2.31	4.64	50.3 %
	15cP	2.35	4.89	52.0%
	1cP	2.05	4.45	54.1 %
6M	8cP	2.55	4.34	41.2 %
	15cP	2.20	5.21	57.8 %
12M	1cP	2.63	4.71	44.3 %
	8cP	2.53	4.43	43.1 %
	15cP	2.39	4.55	47.6 %

- Break-loose forces are on average 50% lower for NovaPure[®] plungers at all viscosities and all timepoints
- Less variability over time with NovaPure plungers especially for high viscosities

Study Extract: TR 2018/191

Break Loose Forces at 1 mm extension



Evaluation of Plunger Movement During Transit Conditions

West Plungers Evaluated: 1-3 ml FluroTec[®] film laminated plunger and 1-3 mL NovaPure[®] plunger

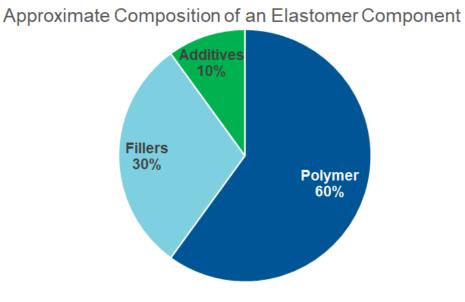
- Headspace Values
 - 6 mm (exaggerated vent-tube placement)
 - 3 mm (typical vent-tube placement)
 - <1 mm (typical vacuum placement)

Altitude	Significance
8,000 ft	Pressurized Jet
12,000 ft	Mountain Passes
16,000 ft	Unpressurized Jet
20,000 ft	Highest Cargo Jet Altitude on Record

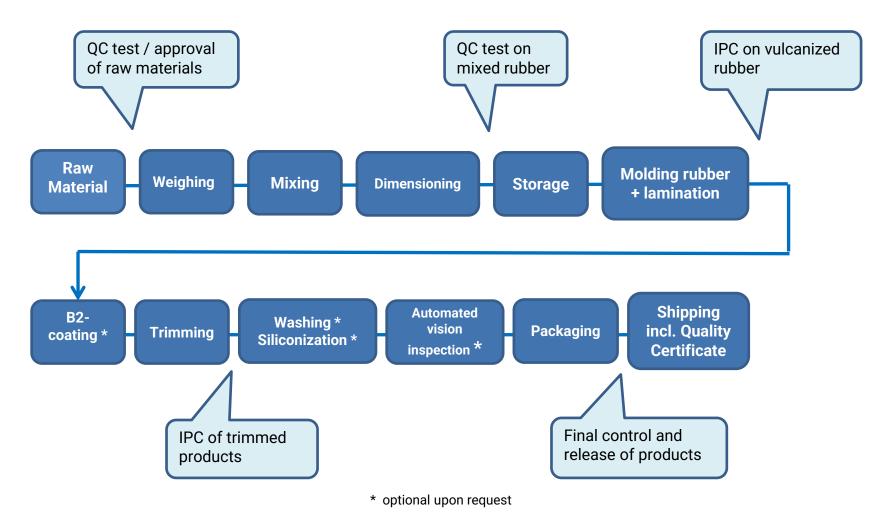
- Linear correlation between pressure and movement
- Higher headspace volume leads to stronger movement
- NovaPure[®] and legacy plunger performance is comparable

Extract of Study – technical report available – TR 2016-172

Processing

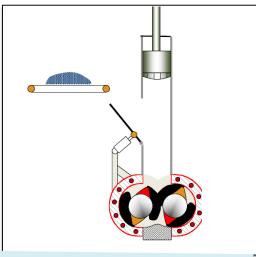


COPYRIGHT © PDA 2018

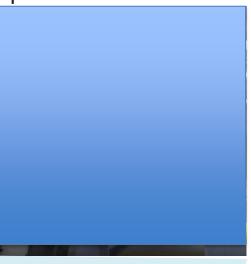

Elastomers: General Composition

- Fillers are mainly defining the physical properties
- Additives can be curing agents, antioxidants, accelerators, activators, protective agents, colorants, plasticizers, acid scavengers, light and heat stabilizers, lubricants, anti-static agents, etc.

Production Overview [Plungers]



ral Drug Asso


Internal Mixer

Mixer all components are mixed by turning rotors

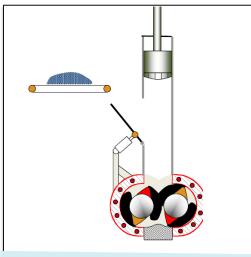
- Shearing the elastomer, squeezing out air, Incorporating all material
- Critical parameters are specific for the individual formulations: rotor speed, temperature, time, filling volume, etc.
- Caution not to start vulcanization

Open Mill

Mill additional homogenization of the mixture by compactors

- Squeezing out air, cooling
 down
- Caution not to start vulcanization
- Elastomer mixture is collected in "puppets"

Mixing Control (Mill Control)


Curing of ISO – standard sample for testing purposes

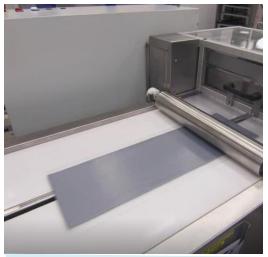
specific gravity	per batch	
Shore A of vulcanized sample	per batch	
dispersion of vulcanized sample	per batch	
color of vulcanized sample	per batch	
ash content	every 10 th batch plus 1 st and last	
rheology of the compound	every 5 th batch plus 1 st and last	

Manufacturing Process

Internal Mixer

Mixer all components are mixed by turning rotors

- Shearing the elastomer, squeezing out air, Incorporating all material
- Critical parameters are specific for the individual formulations: rotor speed, temperature, time, filling volume, etc.
- Caution not to start vulcanization

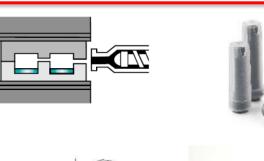

Open Mill

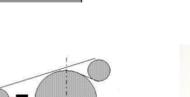
Mill additional homogenization of the mixture by compactors

- Squeezing out air, cooling
 down
- Caution not to start vulcanization
- Elastomer mixture is collected in "puppets"

Calandering & Dimensioning

- Puppets" are finally cooled down in rollers
- Cooling & Cutting
- Coasted into webs with defined thickness and width
- Webs are led to relax for some time


Pharmaceutical Rubber Manufacturing


Different 'shapes' need different molding technology:

- Compression Molding (CM) Plungers, stoppers, disks....
- Precision Injection Molding (PIM) Needle shields ...
- Rotocure (Sheeting Material) Lined seals...

COPYRIGHT © PDA 2018

Rotocure

Manufacturing Process

Compression Molding

- Compression and Precision
 Injection Molding
- Vulcanization takes place
- Critical parameters are specific for the individual formulations: press speed, temperature, time, vacuum, etc.

- Trim presses designed for cleanroom manufacturing
- Enhanced trim dies to lower particle contamination
- Automated control of web positioning
- Automated web spraying for lubrication

Trimming

Single parts transferred to Washing
 operations

CONNECTING PEOPLE SCIENCE AND REGULATION®

COPYRIGHT © PDA 2018

Finishing: Washing and Siliconization

- Westar[®] wash process is a validated pharmaceutical washing process with defined levels of silicone, bioburden and particles, which is certified in a CoA coming with every batch
- Available in a DMF, Type V
- Loading in ISO 8
- Unloading and packing in ISO 5
- Quality Certificate for each Batch
- Ready-to-Sterilize or Ready-to-Use

Final Inspection: Sampling, Packing and Release Testing

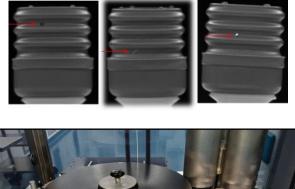
- Evaluation of sample size according to ISO <u>2859</u>
- Visual check according to the defect evaluation list for rubber parts
- Defect / individual characteristics
- Dimensional Inspection
- AQL Samples
- Customer Samples
- Retain Samples
- Test Samples

Envision[™] Verification Process

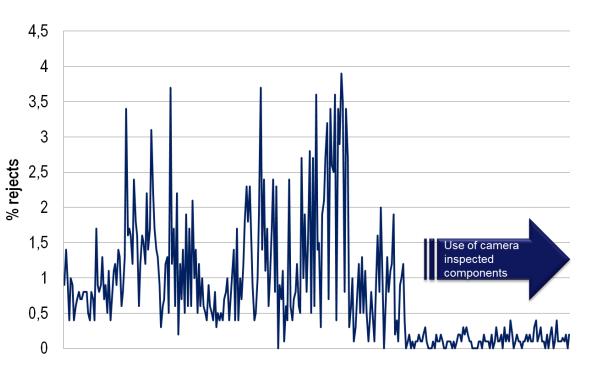
- Product transfer into the automated vision room
- Product scanned into facility traceability system

- Product placed into vibratory hopper
- Product is oriented and fed into the vision machine

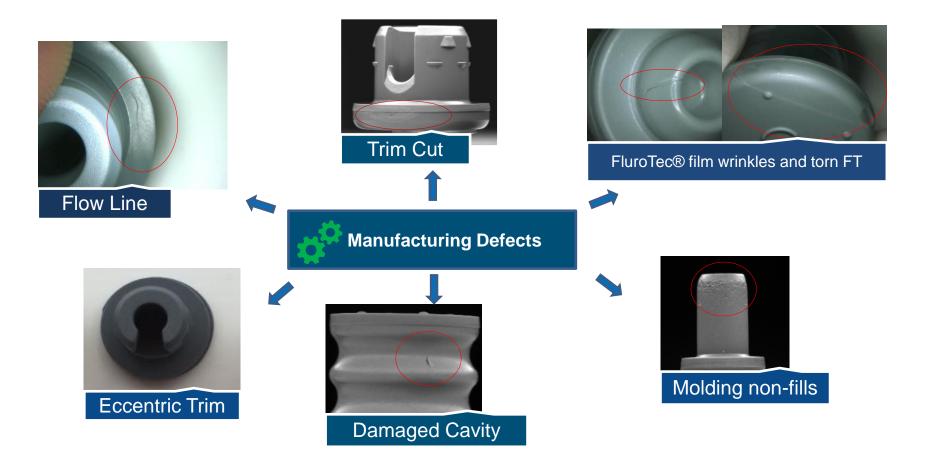
 Machine started with appropriate configuration verified during setup

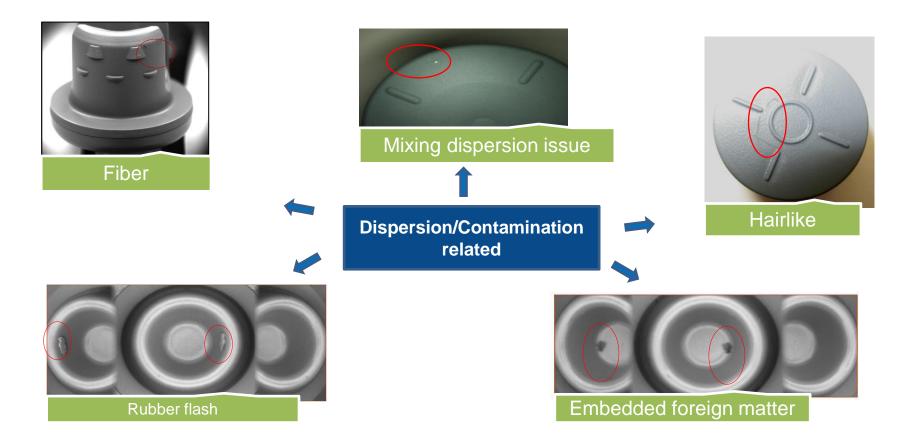

- Multiple camera arrangements
- Envision verification is performed through optimized camera station design and set-ups

ISO 5 [Class 100]


End-of-Line Defect Reduction

100% Camera Inspection of rubber components

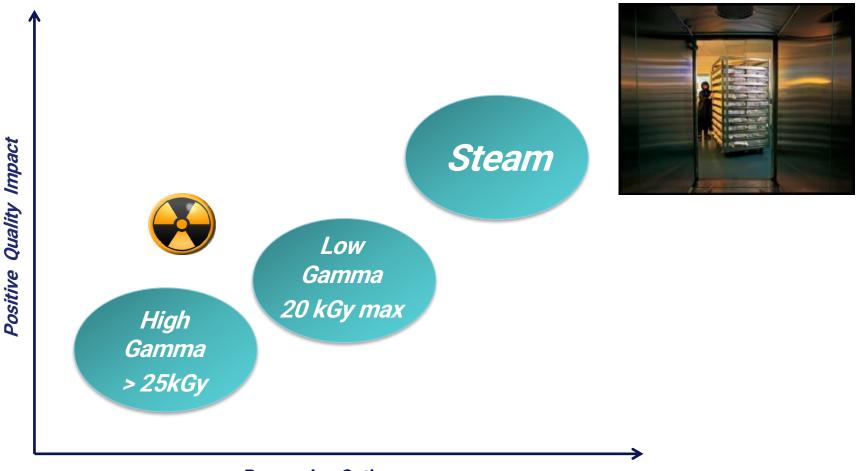

Case Study: End-of-line drug filled units reject trend


Envision[™] Verification: Defects Examples

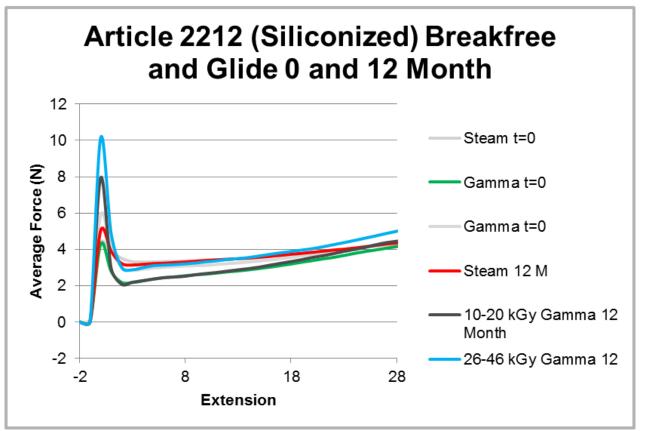
Envision[™]Verification: Defects Examples

Manufacturing Process

COPYRIGHT © PDA 2018


Typical Sterilization Treatments for Elastomeric Components

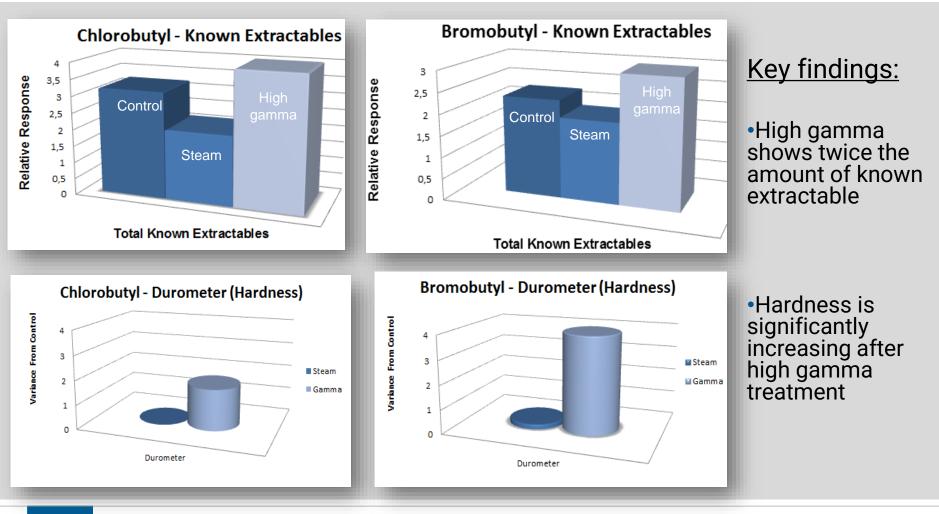
Ready-to-Use Steam vs Ready to Use Gamma for Plungers



Processing Options

1 mL long Plunger - Break Loose and Gliding Force at 0 and 12 Month

<u>Key findings:</u>


Steam treated plungers improve functionality due to lower and more consistent break loose forces

Ref.: TR 2011/140

PDA® Parenteral Drug Association

Physical and Chemical Characteristics Steam versus High Gamma

Secondary Packaging - Flexibility for Filling Needs

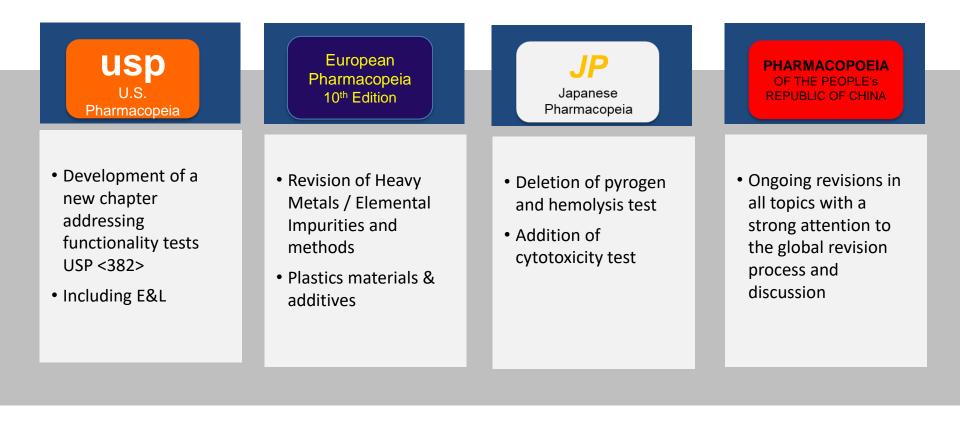
Drug Development and Life Cycle Management Require Multiple Packaging Formats Prescreens, Process Validations, Clinical Trials, Commercial fill-finish

COPYRIGHT © PDA 2018

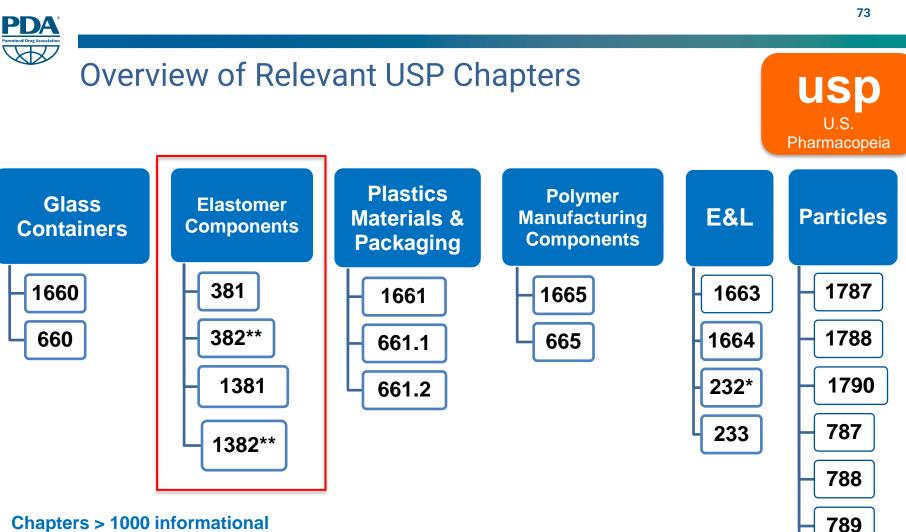
Relevant Compendial Chapters and Standards

COPYRIGHT © PDA 2018

Global Comparison of Elastomer Chapters


Purpose	Paragraph	USP <381>	Ph Eur 3.2.9	JP 7.03	YBB
Introduction	Definition of Elastomer Types	\checkmark	\checkmark	—	\checkmark
Identification	e.g. IR, ash test	\checkmark	\checkmark	\checkmark	\checkmark
Physico- chemical Tests	Appearance of solution, absorbance, etc	\checkmark	\checkmark	\checkmark	\checkmark
Potential Extractable	Ammonium, Volatile Sulfides	\checkmark	\checkmark	\checkmark	\checkmark
Functionality Tests*	Fragmentation, self- sealing,	\checkmark	\checkmark	—	\checkmark

*functionality tests are moving to USP 382 starting from 2025



Global Comparison of Elastomer Chapters

Chapters > 1000 informational Chapters < 1000 mandatory if required by monograph

- <231> has been deleted
- ** will be official 2025

790

Introduction to USP <1382> and <382>

<1382> Assessment of Elastomeric Component Functional Suitability in Parenteral Product Packaging/Delivery Systems

- Assist in the functional suitability assessment of elastomeric components as part of packaging / delivery systems
- ISO references
- Sampling plan guidance

<382> Elastomeric Component Functional Suitability in Parenteral Product Packaging/Delivery Systems

Fitness for intended use functional suitability tests and requirements

Released December 2020 with 5-year implementation grace period

Current <381> versus <382>

From: USP <381>

Elastomeric Closures for Injections

- Functionality Tests
 - Penetrability
 - Fragmentation
 - Self-Sealing Capacity

Container Closures for Vials and Bottles

To: USP <382>

Elastomeric Component Functional Suitability in Parenteral Product Packaging and Delivery Systems

- Package/Delivery System Integrity Tests
- Needle and Spike Access Functionality Tests
 - Fragmentation
 - Penetration Force
 - Needle Self-Sealing Capacity
 - Spike Retention and Sealability Capacity
- Plunger Functional Suitability Tests
 - Plunger Break Force and Plunger Glide Force
 - Plunger Seal Integrity
- Tip Cap and Needle Shield Functionality Tests

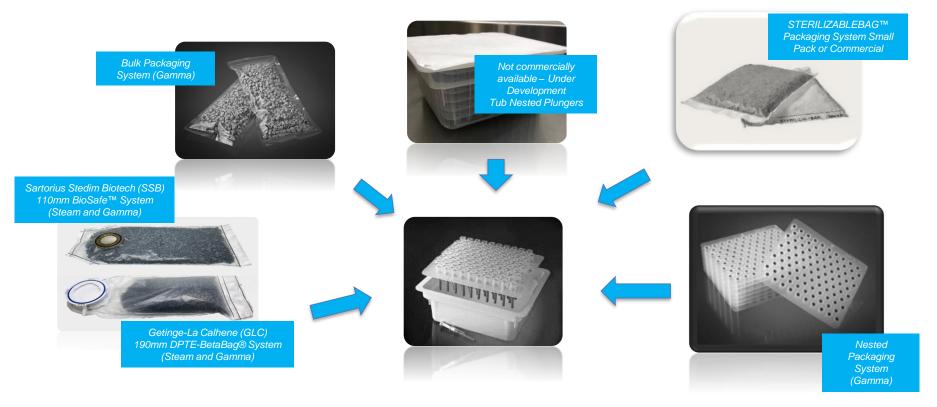
<u>System</u> Closures for Vials, Bottles, Blow Fill Seal Containers, Plastics, Cartridges and Syringes

Secondary Packaging

COPYRIGHT © PDA 2018

Packaging Materials

High-quality packaging materials


- Reduction of particle load of primary packaging → tighter specification
- Ease of use
- Pinhole resistant physical stress
- Plastic cartons & plastic pallets

Ready-to-Use Packaging Solutions

Please note, not all product offerings are available in these packaging formats

Thank you very much for your attention!

Any Thoughts? Any Questions?

Christa.Jansen-Otten@westpharma.com

West and the diamond logo, NovaPure®, VeriSure®, STERILIZABLEBAG[™], FluroTec®, LyoTec®, SelfDose®, Envision[™], and Westar® are trademarks and registered trademarks of West Pharmaceutical Services, Inc. in the United States and other jurisdictions. FluroTec®, Crystal Zenith®, and B2-Coating technologies are licensed from Daikyo Seiko, Ltd. Copyright © 2022, West Pharmaceutical Services, Inc. All rights reserved.

