All about Pre-filled Syringe Systems From Initial Development to Final Fill Finish Christa Jansen-Otten Bernd Zeiss Basel, May 31st and June 1st 2022

Overview and Introduction into Pre-filled Syringe Market

Overview & Trends • Stakeholders • User's perspective

Technical Aspects

Syringe • Plunger • Needle • Needle shield or Tip cap • Autoinjector • Regulatory guidelines and technical standards

Overview & Introduction into Drug-Syringe Interactions

Aggregation • Degeneration • Oxidation • Viscosity • Bubbles

Overview & Introduction to manufacturing Process of PFS

Syringes Barrel Forming • Washing • Siliconization • Sterilization • Regulatory guidelines and technical standards ...

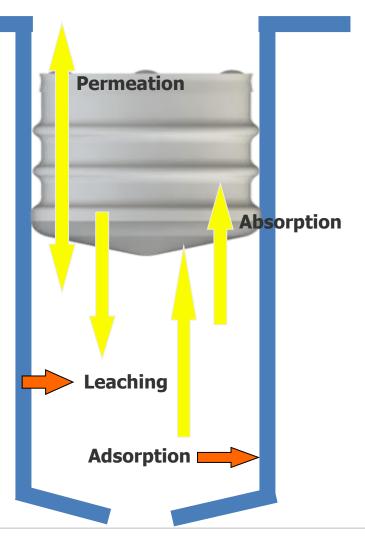
Fill and Finish

Filling • Stoppering • Assembly • Technical Standards

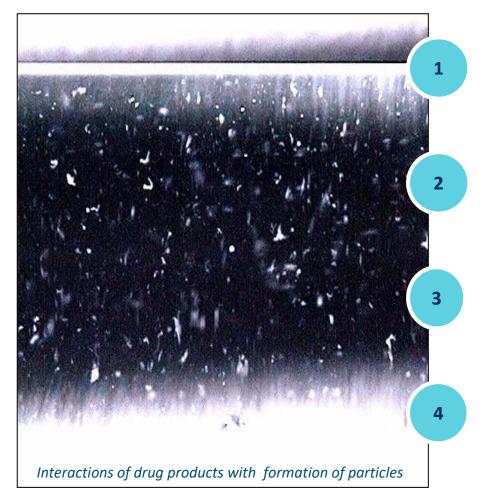
Hands-on Session 1

- Viscosity, pH, concentration, ionic strength...
- Volume
- Sensitivity
 - Light
 - Oxygen
 - Temperature
 - Particles
 - Silicone oil
 - Storage
 - Vibration
 - Shear forces
 - Rubber components
 - Tungsten, glue, steel

Possible Interaction of Drug Product and Elastomeric Closures



These four interactions generally occur at a low rate.



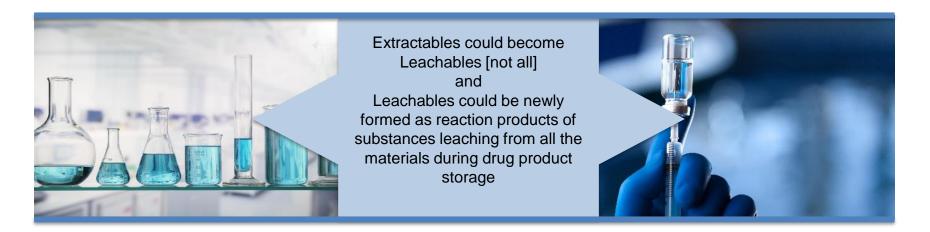
Observed Interactions of Proteins with Pharmaceutical Elastomers

Aggregation of proteins with silicone oil

Adsorption e.g. of Active Product Ingredient [API] at elastomers and container walls

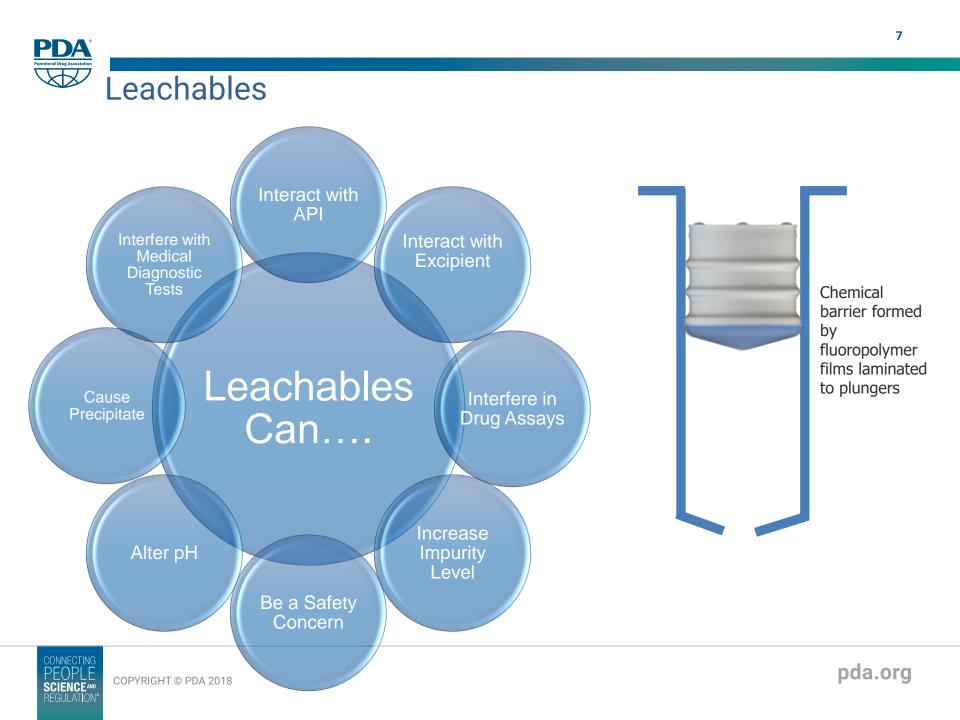
Increased immunogenicity (interactions with leachables)

Out of Specifications [OOS] results for moisture content (e.g. for lyophilized products)



Extractable

Compounds forced/extracted from a container closure component/system in the presence of an appropriate solvent [Extraction Medium]


Leachable

Compounds that leach from elastomeric, plastic components or coatings of the container and closure system as a result of direct contact with the drug formulation over time during storage

Pictures taken from Power Point

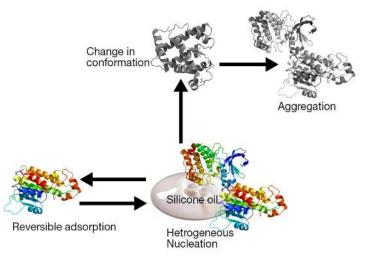
Drug-syringe Interactions I

Bubbles

- Generated in filling process
- Less bubbles in vacuum stoppering
- Bigger bubble in vent tube stoppering
- Transport test recommended
- Moving bubble during transport
- Potential effect on drug formulation
- Expansion and plunger movement risk in air transport (CCI harmed)
- Air means oxygen

Drug-syringe Interactions II

Various interactions possible


- Aggregation
- Degeneration
- Oxidation
- Adsorption

You see

- Precipitation
- Blurring
- Nothing

Triggered by

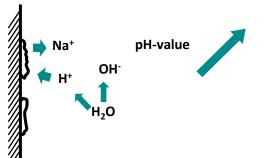
- Drug formulation itself
- Temperature changes, light, oxygen
- Bubbles and mechanical stress
- Barrel: silicone oil, tungsten, glue, steel
- · Elastomer components: cap, stopper

What can be done?

- Stability testing
- Low tungsten
- Low silicone oil
- Extractables profile of rubber components
- Coated plunger stoppers
- Reformulate or stay in vial

Drug-syringe Interactions III

Not seen in syringes – yet another benefit over vials


- pH shift
- Delamination

Why in vials, but not in syringes?

- Vial forming more stressing to glass
- Syringe inside covered by silicone oil
- More aggressive buffers and formulations filled in vials (?)
- Higher pH in vials than in PFS (?)
- PFS normally based on physiologic sodium chlorine solution

Options

- Surface treatment of vials (SiO₂, Ammonium sulphate)
- Special high resistance glass vials, delamination tested
- COP vials
- Reformulate

Test methods and Guidelines I

PDA Technical Report 73

Drug-container interaction

ISO 10040-8

- 1. Quality throughout shelf life when transported and stored **stability studies**
- 2. The impact of components (e.g. needle, tubing)
- **3. Extractables/leachables**, e.g residuals from forming, moulding, assembly process, gluing, sterilization process, rubber ingredients, impurities and degradation products, free silicone, labels
- 4. Compatibility, e.g. loss of potency of the drug, adsorption, degradation of the drug, change of stability indicating parameters
- 5. Effect of shear forces
- 6. **Biological hazard assessment** for the finished prefilled syringe following, e.g. ISO 10993-1

Test methods and Guidelines II

PDA Technical Report 73

ISO 10040-8

Drug-container interaction

- 7. The container closure system shall maintain **sterility** throughout its shelf life including transportation
- 8. Endotoxin levels specified
- 9. The container closure system shall ensure **integrity** throughout filling, terminal sterilizations, further manufacturing steps, storage and transportation to ensure content sterility and to prevent leakage
- **10. Deliverable volume** from the finished prefilled syringe shall comply with the required or labelled drug dose
- 11. Particles (visible and subvisible) see pharmacopoeias

12