Temperature sensors

V. Argentiere, Senior Specialist Technical Training, Fedegari Group Andrew Kerr, Technical Support Manager, Steritech

Temperature sensors

Thermocouples

Platinum resistors, Pt100

Pt 100

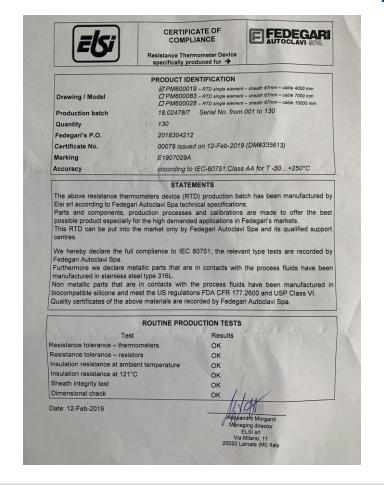
Pt 100 structure and mechanism

- Platinum resistor inside stainless steel sheath packed with MgO for insulation.
- Platinum resistance varies with temperature very uniformly over a large temperature range.
- At 0°C the resistance is 100 Ohms, (Pt 500 or Pt 1000 also available)

Pt 100 where we use them

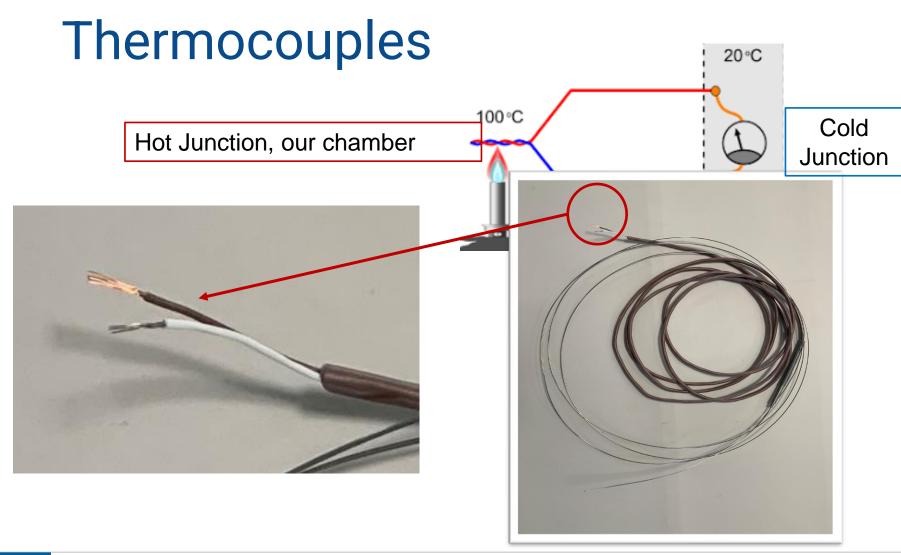
- Fedegari uses Pt 100 probes for controlling sterilization cycles
- Hold their calibration very well
- Very robust

Pt 100 accuracy

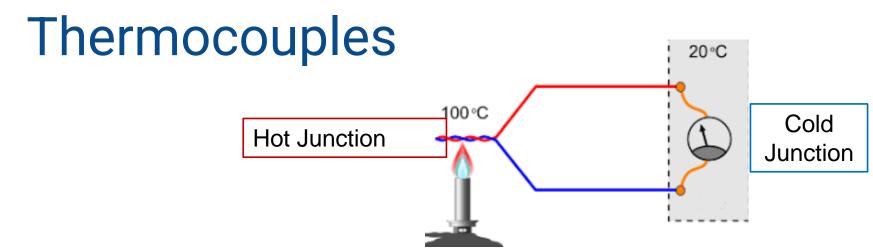

Tolerance class	Temperature range of validity °C		Tolerance values ^(a)	
	Wire wound resistors	Film resistors	°C	
AA	-50 to +250	0 to +150	± (0.1 + 0.0017 t)	
Α	-100 to +450	-30 to +300	± (0.15 + 0.002 t)	
В	-196 to +600	-50 to +500	± (0.3 + 0.005 t)	
С	-196 to +600	-50 to +600	± (0.6 + 0.01 t)	
(a) t = modulus of temperature in °C without regard to sign.				

- Different accuracies of Pt 100
- Fedegari uses AA

Pt 100 certificate of compliance



Thermocouples



Thermocouples Hot Junction, our chamber Cold Junction

- Two wires of two different metals.
- Connected at two points, the 'Hot Junction' and 'Cold Junction'.
- Heat hot junction → flow of electrons between two metals.
- Voltage is proportional to the difference in temperature between the hot and cold junction

Bad Points

- Calibration required before use.
- Verification required after use.
- May not hold calibration for a long time due to change in purity of metals.

Thermocouples Hot Junction Cold Junction

Good Points

- Very flexible/easily manipulated to get into load
- Can measure temperature in a very precise place
- More affordable

IEC 60584-2013

Tolerance classes for thermocouples according to IEC 60584:2013

The American ASTM E230/E230M-12 is a parallel standard, but be aware that both tolerances and temperature ranges could be different from those of the IEC standard. Note that prescribed tolerances are valid for unused thermocouple material only.

Thermocouple	Tolerance class 1	Tolerance class 2	Tolerance class 3		
	(°C)	(°C)	(°C)		
	, ,	, ,	` '		
Type R and S					
Temperature range	0 ≤ T ≤ 1600	0 < T < 1600			
	±1	±1.5			
Largest value is to be	för T<1100	21,0	-		
used.	[±1+0,003•(T-1100)]	±0,0025•T			
Time D	för T > 1100				
Type B		600 < T < 1700	900 - T - 1700		
Temperature range		±1.5	600 < T < 1700		
Largest value is to be used.	-	±1,5 ±0,0025•T	±4 ±0,005•T		
Type J		±0,0025*1	±0,000+1		
. 11	40 - 7 - 750	40 - 7 - 750			
Temperature range	-40 < T < 750	-40 < T < 750			
Largest value is to be	±1,5	±2,5	-		
(Trans		±0,0075•ITI			
Type T					
Temperature range	-40 < T < 350	40 < T < 350	-200 < T < 40		
Largest value is to be	±0,5	±1	±1		
used.	±0,004•ITI	±0,0075•ITI	±0,015•ITI		
Temperature range	-40 < T < 800	-40 < T < 900	-200 < T < 40		
Largest value is to be	±1,5	±2,5	±2,5		
used.	±0,004•ITI	±0,0075•ITI	±0,0075•ITI		
Type K and N					
Temperature range	-40 < T < 1000	-40 < T < 1200	-200 < T < 40		
Largest value is to be	±1,5	±2,5	±2,5		
used.	±0,004•ITI	±0,0075•ITI	±0,0075•ITI		
Type C					
Temperature range		426 < T < 2315			
Tolerance		±0,01•T			
Type A					
Temperature range		1000 < T < 2500			
Tolerance	-	±0,01•T			
Reference junction 0°C					
Updated 2014-09-22					

- Our choice:
- Type T, Copper/ Constantan
- T range according to our criteria
- ✓ Severe tolerance class

TC: when do we use them?

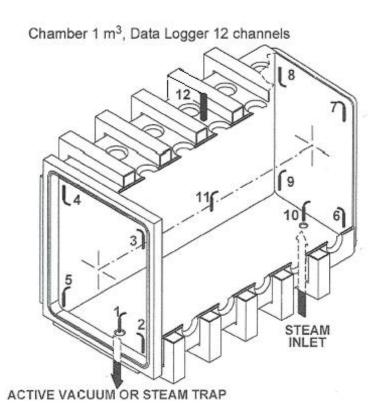
Temp. Distribution Exercise (Thermal mapping) During OQ – empty chamber

Temp. Penetration Exercise

During PQ – with the load for cycle development

TC – FAQ how many have to be used?

- There are not set rules
- Must be judged on a case by case basis
- Enough to cover all critical points within chamber and load
- Typical 'rule of thumb'
 12 for all chambers up to 2000 liters.
 Plus two for every extra 1000 liters


TC – FAQ where locating them?

- There are not set rules
- Looking for the coldest point during the exposure
- Looking for the slowest point to reach minimum Sterilization temperature
- Enough to cover all critical points within chamber and load

TC - FAQ where locating them?

Summary

	Pt 100	Thermocouple
How they work?	Resistance across a platinum resistor	Voltage created between two wires of different metals
When do we use them?	Sterilization process control	OQ and PQ procedures for thermal distribution and thermal penetration
Good points	Hold calibration well Robust	Easily manipulated Measure temp in a precise point
Bad Points	Large and harder to manipulate	Have to frequently recalibrate

Thank you

<u>VIA@fedegari.com</u> training@fedegari.com

