

Inspection Validation Methods

John G. Shabushnig, Ph.D. Insight Pharma Consulting, LLC insight!

johnshabushnig@aol.com October 2021

> An Introduction to Visual Inspection © 2021 John G. Shabushnig

Connecting People, Science and Regulation®

- Requirements / Specifications
- Installation Qualification
- Human Baseline Performance
- Test Set Composition
- Operational Qualification
- Performance / Process Qualification
- Routine Performance Verification

Validation vs. Qualification

- Equipment must be validated
 - IQ/OQ/PQ
- Human inspectors are trained and qualified
 - NOT validated

Human Performance Baseline

- Establish human inspection performance with defect test set.
- Can use to make direct comparison to compendial inspection method.
 - USP and EP

An Introduction to Visual Inspection © 2021 John G. Shabushnig

Connecting People, Science and Regulation®

Test Set Composition

- Defects to include in Test Set
 - Multiple examples of anticipated defects
 - Weighted toward critical defects
 - Defect examples are qualified by multiple inspection by qualified inspectors. Reject zone defects (with POD ≥ 70%) selected for inclusion.
- Typical Test Set Size
 - 500 to 1000 units

Test Set Composition

- Production Defects vs. Standards
 - "Real" defects necessary to validate production performance
 - Standard spheres useful to establish baseline, compare methods and settings and monitor routine performance
- Defect rate in test set
 - For human studies, 10% or less is preferred to avoid Hawthorne Effect (positive reinforcement)
 - Not relevant for machine studies

- Inspector Selection
 - Visual Acuity (near-vision)
 - Color Perception
- Initial Training
 - Defect Examples
- Initial Qualification
- Periodic Requalification

- Multiple inspections of test set to determine reject probabilities of individual units
- Sort results into the following ranges:
 - Accept Zone: P = 0.0 to 0.3
 - Gray Zone: P = 0.3 to 0.7
 - Reject Zone: P = 0.7 to 1.0
- Calculate Reject Zone Efficiency (RZE)
- Calculate Accept Zone Loss (AZL)

RZE = RZR/RZN

Where:

RZR = Reject Zone Rejects, the number of vials rejected in the Reject Zone

RZN = Reject Zone Number, the total number of vials in the Reject Zone

- Calculate comparable terms for the Gray and Accept Zones.
- Accept Zone Loss (AZL) is a measure of the false reject rate.
- The RZE for an alternative method should be the same or better than the reference method.
- Gray Zone vials may be "sacrificed" to achieve higher RZE.

- Remember, as originally published, this method was designed to assess inspection for particles only.
- To apply the method to the full range of visible defects normally addressed, it is necessary to categorize defects by risk and determine an RZE for each risk category.
- As published, defect test sets have a ~30% defect rate. This is very high and likely to bias the results. A defect rate of 10% or less is recommended.

How often are inspectors requalified?

	2014	2008	2003	1996
Never	5%	21%	8%	35%
Monthly	1%	5%	0%	8%
Quarterly	4%	0%	0%	8%
Semi-Annually	10%	11%	8%	16%
Annually	79%	63%	75%	69%

Equipment Validation (Manual and Semi-Auto Inspection)

- Equipment Specifications
- Installation Qualification (IQ)
 - Utilities
- Operational Qualification (OQ)
 - Light Intensity
 - Inspection Rate (Semi-Auto)
 - Rotation (Semi-Auto)
 - Rejection (Semi-Auto)
- Process Qualification (PQ)
 - Operator Training and Qualification

Specification / Requirements

- User Requirements and Specifications (URS)
 - Good validation starts with clear documentation of the performance expectations for the new equipment.

Factory Acceptance Test (FAT)

- Equipment performance should be confirmed before acceptance for shipment.
 - Check against URS
 - Inspection performance should be tested with samples defects.
 - The false reject rate should also be determined.

Installation Qualification (IQ)

- Installation Qualification (IQ) should document receipt and installation of equipment
 - Model and serial number
 - Features / operating ranges
 - Version numbers of software / firmware
 - Verify utility connection(s)
 - Calibration
 - Spare parts
 - Change parts

Operational Qualification (OQ)

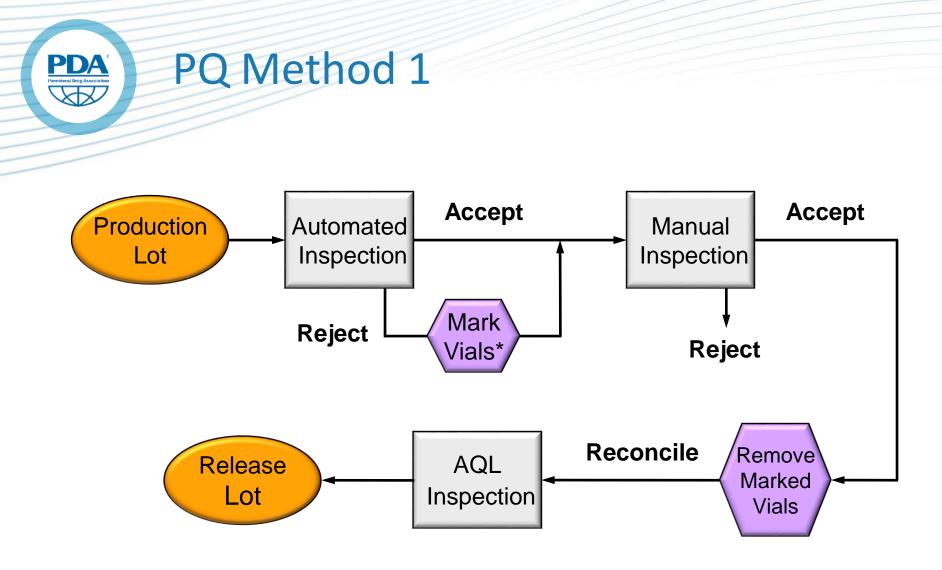
- Operational Qualification (OQ) should document proper function of equipment component systems
 - Emergency stop(s)
 - Eject system(s)
 - Man/Machine Interface (MMI)
 - Reports
 - Other features?
 - e.g., lamp failure detection
 - Establish appropriate operating ranges

Operational Qualification (OQ)

- Detection probability for each defect type
 - Compare with human baseline
 - Establish reference for routine continuous performance verification.

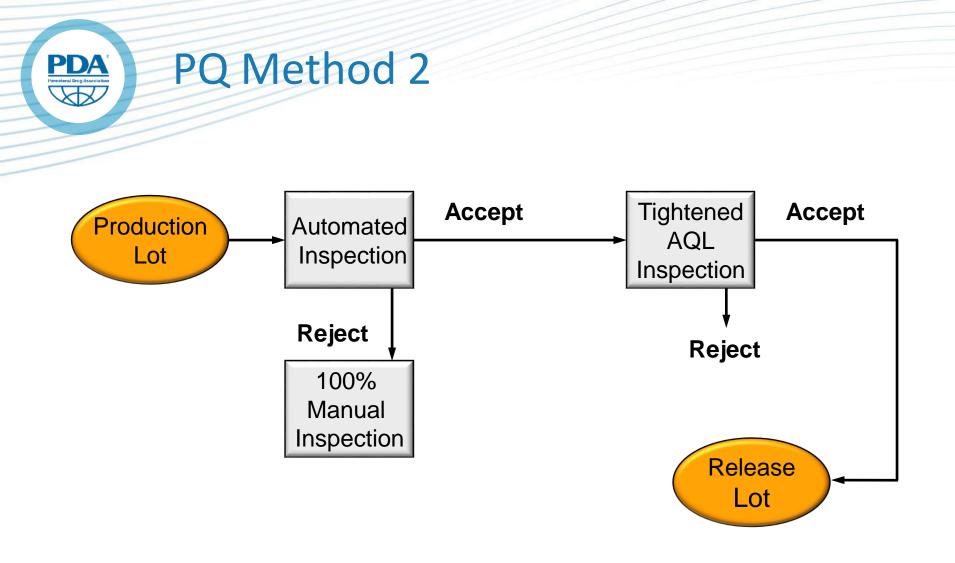
PDA Validation Criteria

- 100% validate automated inspection equipment.
- Validation Criteria:
 - Equivalent to manual: 51%
 - Better than manual: 28%
 - Other, Not compared to manual: 21%


From 2014 PDA Survey of Visual Inspection Practices

Performance/Process Qualification

- Performance / Process Qualification (PQ) confirms expected performance with full production lots
 - Method 1
 - Inspect three production lots by both manual and automated methods
 - Compare defect detection rates
 - Determine false reject rate
 - Method 2
 - Inspect three production lots by automated method and use a tightened sampling plan to assess performance
 - Determine false reject rate
 An Introduction to Visual Inspection


Connecting People, Science and Regulation®

© 2021 John G. Shabushnig

* Vials marked with UV ink; not visible during Manual Inspection

An Introduction to Visual Inspection © 2021 John G. Shabushnig

Complete 3 lots and approve validation report before releasing lots

Connecting People, Science and Regulation®

An Introduction to Visual Inspection © 2021 John G. Shabushnig

Routine Performance Verification

- Typically run before each batch
- Small test set to challenge each sensor/camera station
- Gross examples to assure rejection, Go/No Go test
- Does not challenge sensitivity, but rather camera alignment, functionality and proper operation of reject system.

How frequently do you challenge or retest automated inspection equipment?

	2014	2008	2003	1996
Never	1%	0%	0%	15%
Each Shift	1%	8%	13%	8%
Start of Lot	46%	42%	75%	38%
Start and End of Lot	8%	ND	ND	ND
Daily	15%	25%	19%	23%
Weekly	2%	0%	0%	8%
Monthly	2%	ND	ND	ND
Quarterly	1%	ND	ND	ND
Annually	19%	ND	ND	ND

ND = No Data, question not asked in survey from this year
An Introduction to Visual Inspection
© 2021 John G. Shabushnig

Remember, everyone is an inspector!

An Introduction to Visual Inspection © 2021 John G. Shabushnig

Connecting People, Science and Regulation®