
(bio)Decontamination with 
Hydrogen Peroxide (H2O2):
Fundamentals
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Isolator technology
• Separation of the process and operators
• Aseptic processing ~ handling of the product

while preventing its (microbial) contamination

• Key Functions

– Maintenance of Aseptic state

• HEPA filtration

• Unidirectional airflow 

• Differential pressure (gradient)

• Transfer systems

• Physical separation (gloves)

– Establishment of aseptic state

• (Cleaning / Disinfection)

• Decontamination

• (Sterilization)
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Decontamination

• Process that reduces viable bioburden to acceptable level via use of sporicidal chemical agents

Key applications
• Bioburden management: room decontamination, material transfer airlocks/hatches
• Preparation of an isolator for aseptic processing (production)

Critical zone – Grade A

decontamination

Contaminated chamber 
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Hydrogen peroxide (H2O2)

• Why do we use H2O2 ?

– Broad non-specific activity against microorganisms

– Low toxicity, safe to use

– Active at low temperatures and ambient pressure

– Good material compatibility

– Acceptable storage stability

– Environmentally green solution

• Why vapor form ?

– Complex, yet highly effective

– Vapor may be efficiently distributed over the enclosure

– It allows automated “No touch” process that can be validated

– Established technology
-> over 25 years of successful history

Hydrogen peroxide
BP: 150°C / 302°F

Water
BP: 100°C / 212 °F
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Vapor
• Vapor refers to molecules in a gas phase of a substance that at given temperature exists as a 

liquid (or a solid)

• Each substance has a limit (maximal) vapor concentration depending on the temperature
“Saturation vapor pressure”

• H2O2 is less volatile than water (approx. 10x) -> evaporated H2O2 condenses preferably

Vapor 
pressure 
(kPa)

Temperature (°C)

100°C

101.3 kPa

2.3 kPa

20°C

H2O
H2O2

150°C

0.2 kPa

Water boiling point
Hydrogen peroxide 

boiling point

Max water 

concentration 

at 20°C = 

23100 ppm

Max H2O2

concentration 

at 20°C = 

1800 ppm
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Key decontamination parameters
• Key parameters: CONTACT TIME, H2O2 vapor concentration and relative saturation
• Microbial inactivation rate increases (=better decontamination effect) with

– Longer contact time, Higher H2O2 vapor concentration, higher relative saturation

Relative 
saturation

+
dew point

Temperature

H2O2
concentration

Pressure
(ambient)

Humidity

Typical decontamination 

conditions
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Relative Humidity and Saturation
• Relative Humidity (%rH) represents the amount of water vapor in air

• Relative Saturation (%rS) represents the amount of water and H2O2 vapor in air

• With increasing humidity, maximal achievable H2O2 vapor concentration decreases

• With increasing temperature, higher H2O2 vapor concentration can be reached
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H2O2 deposition

• Adsorption appears on all surfaces in contact with hydrogen peroxide/water vapor
• The adsorbed layer thickness increases with increasing relative saturation
• Visible condensation appears on surfaces that are below the dew point temperature
• The concentration of H2O2 in adsorbate/condensate is much higher than in the vapor phase

Visible condensation

Example – vapor-liquid equilibrium
20°C, 600ppm H2O2, 40% rH (9000ppm water)

-> deposition of 60%wt H2O2

15:1

1:1
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Environmental effects

• Decontamination is typically performed at ambient conditions

– Humidity

– Temperature

– Pressure

• Higher humidity -> Less air capacity for H2O2 vapor -> Lower max efficacy
• Lower temperature -> Less air capacity for H2O2 vapor -> Lower max efficacy
• Pressure influence insignificant

• WORST CASE -> low temperature + high humidity

• Dehumidification applied to eliminate
process variations due to humidity fluctuations
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Effect of temperature locally
• Deposition of H2O2 on a surface decreases with increasing surface temperature
• Importance of temperature mapping for cycle development
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Basic principle

H2O2

Solution

Vaporizer

H2O2 vapor

Carrier 

gas

HEPA filter

Isolator 
chamber

Vaporization Distribution Deposition Removal
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Hot plate evaporation

Example – SIS-700 System

H2O2 vapor

Hot plate

H2O2 vapor

VentilatorPeristaltic 

pump
HEPA filter

H2O2

bottle

Qualified zone

Carrier air (recirculation active)

H2O2 deposition

≈ Decontamination
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Evaporation by fogging

Example - skanfog® micro-nebulization

Optional HEPA filter

H2O2

bottle

Peristaltic 

pump

H2O2 + Compressed  air

Nozzle

H2O2 vapor

HEPA filter

Qualified zone

H2O2 deposition

≈ Decontamination

Ventilator

off

Optional recirculation catalytic convertor

Air recirculation inactive
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Fogging       vs         Hot plate

• Robust and effective

• “Cold” vaporization

• Allows fast H2O2 injection

• Less H2O2 consumed

• Reduced HEPA filter exposure

• Nozzle positioning flexible

• Flexible and scalable

• Cycle times <1 hour possible

• Robust and effective

• “Hot” vaporization

• Slower H2O2 injection required

• Higher H2O2 consumption

• Full HEPA filter exposure

• Fixed vaporizer positioning

• Less flexibility/scalability

• Cycle times <2 hours possible

While the technology of vapor delivery is 

different, fundamentals remain the same!

Both technologies may offer benefits 

depending on the process needs
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Process control

• The same general principles 
apply for all H2O2 vapor phase
decontamination techniques

• Key Factors:

– Equipment design

– Justification of cycle parameters
during cycle development

– Suitable Biological indicator 
and other tools

– Process expectations, QRM
(deco effect, residual H2O2)
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Equipment design

• Only materials suitable for H2O2 decontamination should be used!

– Decontamination aspects (e.g. porosity)

– Material persistence (e.g. chemical resistance)

– H2O2 absorptivity

– Catalytic activity

– TESTING, not assuming

• Hygienic design and system accessibility to assure good cleanability of the surfaces 

• Good H2O2 distribution (no “dead end” cavities, minimize weak spots, active homogenization)

• Criticality of loading pattern (cycle development)

• Keep temperature variation within acceptable level (cycle development)
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Biological indicators

• Tools for evaluation of microbial inactivation processes
• BI consists of homogeneously distributed biocontamination 

on a metal carrier packed in permeable membrane

• BIs developed for H2O2 decontamination

– Spores of Geobacillus Stearothermophilus
(highly resistant to H2O2 processes)

– BIs with excess of 104, 105 or 106 CFU/carrier

– Carrier material - Stainless steel

– Primary packaging - Tyvek®

– Custom BIs can also be used

“BI is a characterized preparation of a 

specific microorganism that provides a 

defined and stable resistance to a 

specific microbial inactivation 

process” (USP <55>)

“The biological indicator provides a means 

to directly assess the sterilizing effect of 

the method in a manner not possible by 

physical measurements.” (USP<1229>)
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BI resistance

• Resistance of BIs is typically expressed as D-value

• D-value is defined as a time needed to reduce viable 
population on the BI carrier by 90% (i.e. 1 log reduction)

• For H2O2 standard “kill” conditions are not defined

• Resistances given by BI manufacturers are informative 
only (e.g. lot-to-lot variability)

• Methods differ significantly among vendors! request 
information about the method

• Importance of model behavior – within lot variability
Lot should behave homogeneously, minimum of late
positives
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Chemical indicators (CIs)

• Qualitative CIs play minimal (yet sometimes very useful) role

– Immediate and simple readout (color change visible with naked eye)

– Qualitative indication of H2O2 presence only

– Weak information with regards to cycle effectiveness

– Quick check of the decontamination homogeneity/ distribution

– Can be used for troubleshooting, design optimization purposes
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Sensors: inline measurement of 
key in-process parameters

• Temperature
• Humidity
• H2O2 concentration (High and Low)
• (Relative saturation / Dew point)

• There is no harmonized model relating key in-process parameters
and H2O2 decontamination effect (i.e. BI kill / spore log reduction)

• Trending of in-process parameters allows for very good indication
of cycle reproducibility -> Cycle Health
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Decontamination 
expectations

• Integrated and automated process capable to reach all inner surfaces
• Proven robust effectiveness

– Process must be validated + safety margin for robustness

– Validation is performed with suitable Biological Indicators (BIs)

– Total kill of 6 log BIs is typically expected

• Safe for operator and no impact on the processed product

– After decontamination, the active agent concentration needs to be reduced to  
required safe level

Hydrogen peroxide (delivered in vapor form) 

is the most common agent in the industry
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Residual H2O2 target

• Definition of Target H2O2 level

– Typically target of 1ppm (or 0.5ppm) is based on operator safety requirements

– Products may be extremely sensitive to oxidation and thus lower concentrations of 
0.1ppm or even lower towards 30ppm are sometimes needed

– Perform spiking studies and trace H2O2 exposure tests to justify the H2O2 aeration target

• Optimization of aeration duration

– Technology selection, novel airflow concepts and
catalysts enable extra short cycle times 

– Wrong selection of loading material
may ruin any short cycle goal

– Preliminary testing of H2O2 ingress 
into various materials will prevent 
any possible issues

– Each plastic material is different!
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Common misconceptions
• H2O2 decontamination is a gaseous process

– NO, H2O2 decontamination is two phase liquid-vapor process

• Condensation must be prevented during the cycle

– NO, quickly reaching saturation and even condensation on surfaces makes inactivation 
quicker (also the surfaces above the dew point temperature become decontaminated, but 
it takes longer)

• Condensation will damage the materials

– NO, only materials tested to be persistent to H2O2 should be used in isolators and 
therefore this is not a concern (may be a concern for room decontamination)

• Inactivation of 6 log BI assures robust process

– NO, H2O2 decontamination has limited penetrability and therefore only suitable materials 
(e.g. non-porous) shall be used; surfaces need to be clean prior to the cycle

• D-values on BI certificates will apply for any H2O2 decontamination system

– NO, D-values will differ system to system, the certified D-value may be used only to assess 
lot-to-lot differences of a specific BI type
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Thank you for your attention!

Questions?

Martin Novák
Technology Lead

Martin.novak@skan.ch
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