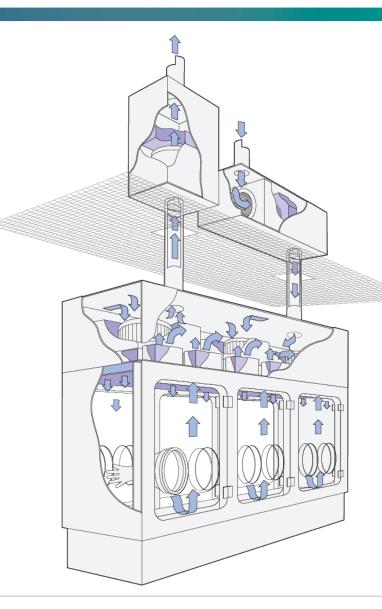
pda.org

(bio)Decontamination with Hydrogen Peroxide (H₂O₂): Fundamentals



Isolator technology

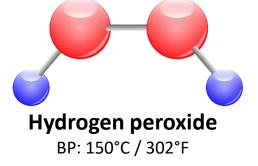
- Separation of the process and operators
- Aseptic processing ~ handling of the product while preventing its (microbial) contamination
- Key Functions
 - Maintenance of Aseptic state
 - HEPA filtration
 - Unidirectional airflow
 - Differential pressure (gradient)
 - Transfer systems
 - Physical separation (gloves)
 - Establishment of aseptic state
 - (Cleaning / Disinfection)
 - Decontamination
 - (Sterilization)

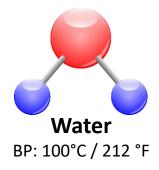
Decontamination

• Process that reduces viable bioburden to acceptable level via use of sporicidal chemical agents

Key applications

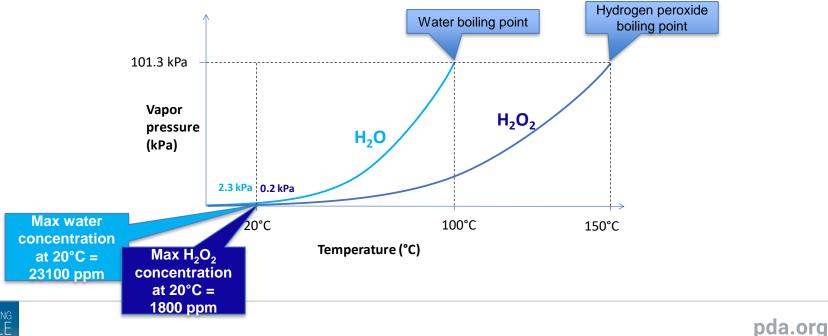
- Bioburden management: room decontamination, material transfer airlocks/hatches
- Preparation of an isolator for aseptic processing (production)





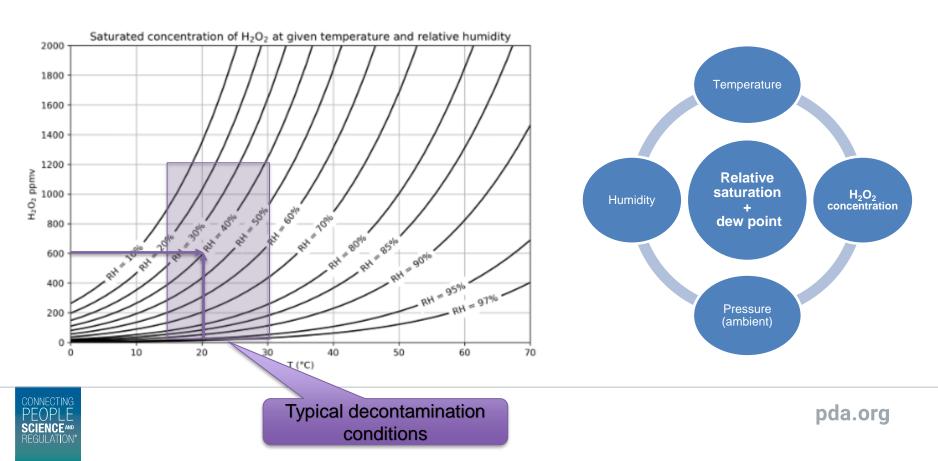
Hydrogen peroxide (H_2O_2)

- Why do we use H₂O₂?
 - Broad non-specific activity against microorganisms
 - Low toxicity, safe to use
 - Active at low temperatures and ambient pressure
 - Good material compatibility
 - Acceptable storage stability
 - Environmentally green solution
- Why vapor form ?
 - Complex, yet highly effective
 - Vapor may be efficiently distributed over the enclosure
 - It allows automated "No touch" process that can be validated
 - Established technology
 -> over 25 years of successful history

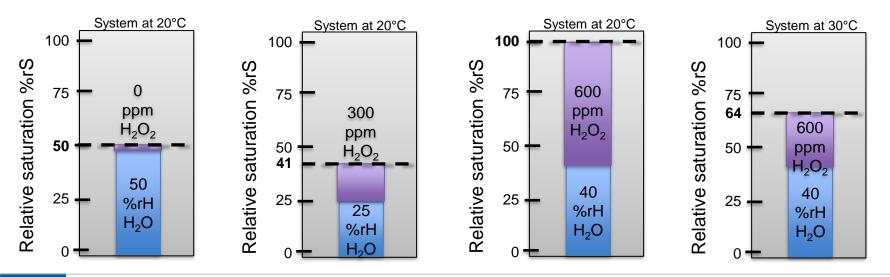


Vapor

- Vapor refers to molecules in a gas phase of a substance that at given temperature exists as a liquid (or a solid)
- Each substance has a limit (maximal) vapor concentration depending on the temperature "Saturation vapor pressure"
- H_2O_2 is less volatile than water (approx. 10x) -> evaporated H_2O_2 condenses preferably

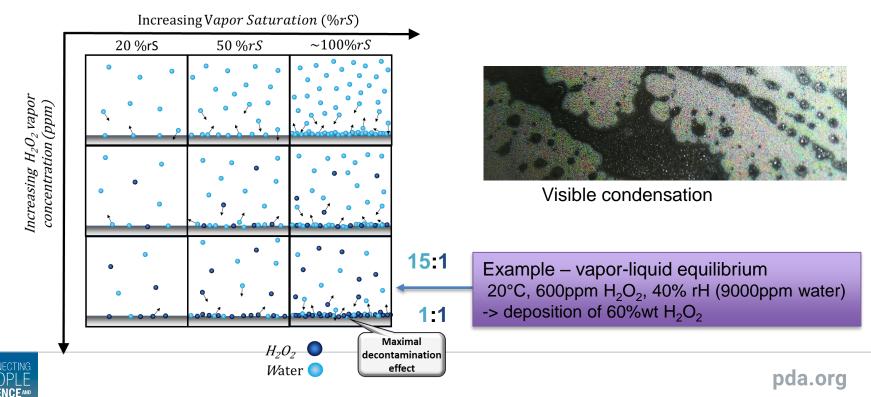


Key decontamination parameters


- Key parameters: CONTACT TIME, H₂O₂ vapor concentration and relative saturation
- Microbial inactivation rate increases (=better decontamination effect) with
 - Longer contact time, Higher H_2O_2 vapor concentration, higher relative saturation

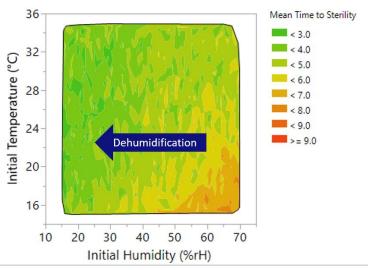
Relative Humidity and Saturation

- Relative Humidity (%rH) represents the amount of water vapor in air
- Relative Saturation (%rS) represents the amount of water and H_2O_2 vapor in air
- With increasing humidity, maximal achievable H₂O₂ vapor concentration decreases
- With increasing temperature, higher H₂O₂ vapor concentration can be reached



H_2O_2 deposition

- · Adsorption appears on all surfaces in contact with hydrogen peroxide/water vapor
- The adsorbed layer thickness increases with increasing relative saturation
- Visible condensation appears on surfaces that are below the dew point temperature
- The concentration of H₂O₂ in adsorbate/condensate is much higher than in the vapor phase

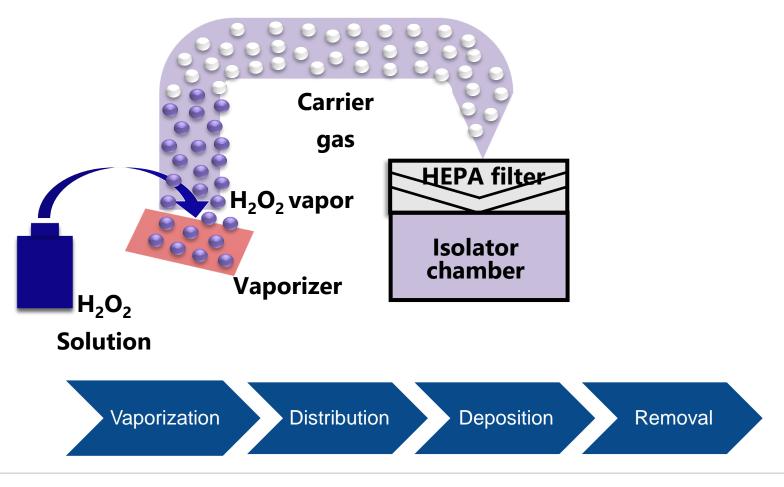

8

Environmental effects

- · Decontamination is typically performed at ambient conditions
 - Humidity
 - Temperature
 - Pressure
- Higher humidity -> Less air capacity for H₂O₂ vapor -> Lower max efficacy
- Lower temperature -> Less air capacity for H₂O₂ vapor -> Lower max efficacy
- Pressure influence insignificant
- WORST CASE -> low temperature + high humidity
- Dehumidification applied to eliminate process variations due to humidity fluctuations

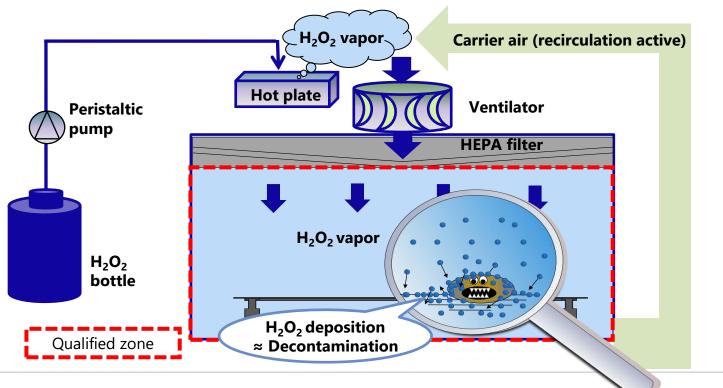
Effect of temperature locally

- Deposition of H_2O_2 on a surface decreases with increasing surface temperature
- Importance of temperature mapping for cycle development



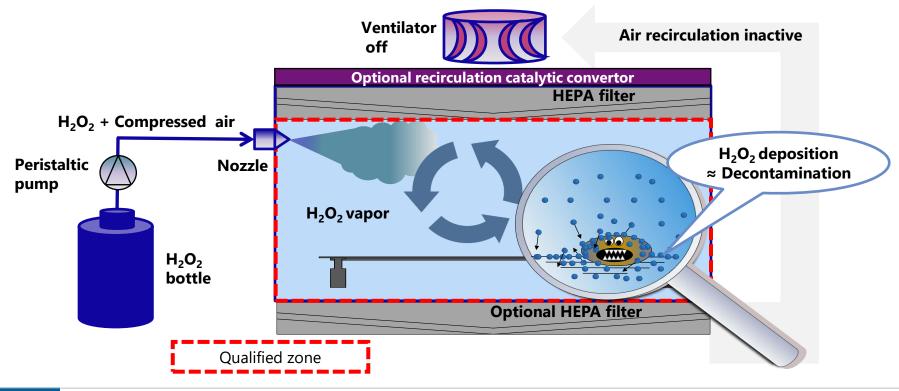
Cold spot

Basic principle



Hot plate evaporation

Example – SIS-700 System



pda.org

Evaporation by fogging

Example - skanfog® micro-nebulization

Fogging

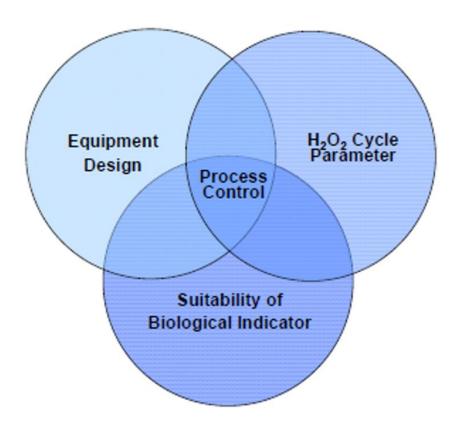
VS

- Robust and effective
- "Cold" vaporization
- Allows fast H₂O₂ injection
- Less H₂O₂ consumed
- Reduced HEPA filter exposure
- Nozzle positioning flexible
- Flexible and scalable
- Cycle times <1 hour possible

Hot plate

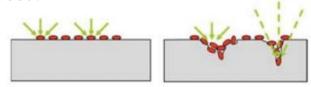
- Robust and effective
- "Hot" vaporization
- Slower H₂O₂ injection required
- Higher H_2O_2 consumption
- Full HEPA filter exposure
- Fixed vaporizer positioning
- Less flexibility/scalability
- Cycle times <2 hours possible

While the technology of vapor delivery is different, fundamentals remain the same!


Both technologies may offer benefits depending on the process needs

Process control

- The same general principles apply for all H₂O₂ vapor phase decontamination techniques
- Key Factors:
 - Equipment design
 - Justification of cycle parameters during cycle development
 - Suitable Biological indicator and other tools
 - Process expectations, QRM (deco effect, residual H₂O₂)



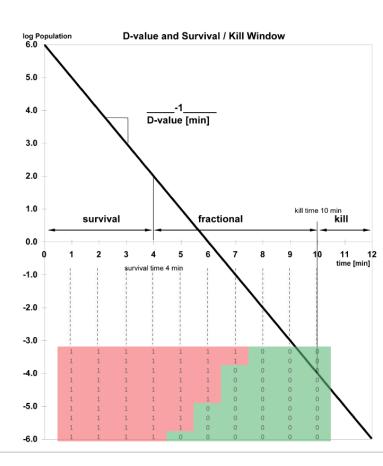
Equipment design

- Only materials suitable for H₂O₂ decontamination should be used!
 - Decontamination aspects (e.g. porosity)
 - Material persistence (e.g. chemical resistance)
 - H₂O₂ absorptivity
 - Catalytic activity
 - TESTING, not assuming
- Hygienic design and system accessibility to assure good cleanability of the surfaces
- Good H₂O₂ distribution (no "dead end" cavities, minimize weak spots, active homogenization)
- Criticality of loading pattern (cycle development)
- Keep temperature variation within acceptable level (cycle development)

Biological indicators

- Tools for evaluation of microbial inactivation processes
- BI consists of homogeneously distributed biocontamination on a metal carrier packed in permeable membrane
- Bls developed for H₂O₂ decontamination
 - Spores of Geobacillus Stearothermophilus (highly resistant to H₂O₂ processes)
 - BIs with excess of 10^4 , 10^5 or 10^6 CFU/carrier
 - Carrier material Stainless steel
 - Primary packaging Tyvek®
 - Custom BIs can also be used

"Bl is a characterized preparation of a specific microorganism that provides a defined and stable resistance to a specific microbial inactivation process" (USP <55>)


"The biological indicator provides a means to directly assess the sterilizing effect of the method in a manner not possible by physical measurements." (USP<1229>)

BI resistance

- Resistance of BIs is typically expressed as D-value
- D-value is defined as a time needed to reduce viable population on the BI carrier by 90% (i.e. 1 log reduction)
- For H₂O₂ standard "kill" conditions are not defined
- Resistances given by BI manufacturers are informative only (e.g. lot-to-lot variability)
- Methods differ significantly among vendors! request information about the method
- Importance of model behavior within lot variability Lot should behave homogeneously, minimum of late positives



Chemical indicators (CIs)

- Qualitative CIs play minimal (yet sometimes very useful) role
 - Immediate and simple readout (color change visible with naked eye)
 - Qualitative indication of H₂O₂ presence only
 - Weak information with regards to cycle effectiveness
 - Quick check of the decontamination homogeneity/ distribution
 - Can be used for troubleshooting, design optimization purposes

Sensors: inline measurement of key in-process parameters

- Temperature
- Humidity
- H₂O₂ concentration (High and Low)
- (Relative saturation / Dew point)
- There is no harmonized model relating key in-process parameters and H_2O_2 decontamination effect (i.e. BI kill / spore log reduction)
- Trending of in-process parameters allows for very good indication of cycle reproducibility -> Cycle Health

Decontamination expectations

- Integrated and automated process capable to reach all inner surfaces
- Proven robust effectiveness
 - Process must be validated + safety margin for robustness
 - Validation is performed with suitable Biological Indicators (BIs)
 - Total kill of 6 log BIs is typically expected
- Safe for operator and no impact on the processed product
 - After decontamination, the active agent concentration needs to be reduced to required safe level

Hydrogen peroxide (delivered in vapor form) is the most common agent in the industry

Residual H₂O₂ target

- Definition of Target H₂O₂ level
 - Typically target of 1ppm (or 0.5ppm) is based on operator safety requirements
 - Products may be extremely sensitive to oxidation and thus lower concentrations of 0.1ppm or even lower towards 30ppm are sometimes needed
 - Perform spiking studies and trace H_2O_2 exposure tests to justify the H_2O_2 aeration target
- Optimization of aeration duration
 - Technology selection, novel airflow concepts and catalysts enable extra short cycle times
 - Wrong selection of loading material may ruin any short cycle goal
 - Preliminary testing of H₂O₂ ingress into various materials will prevent any possible issues
 - Each plastic material is different!

pda.org

Common misconceptions

- H₂O₂ decontamination is a gaseous process
 - NO, H₂O₂ decontamination is two phase liquid-vapor process
- Condensation must be prevented during the cycle
 - NO, quickly reaching saturation and even condensation on surfaces makes inactivation quicker (also the surfaces above the dew point temperature become decontaminated, but it takes longer)
- Condensation will damage the materials
 - NO, only materials tested to be persistent to H_2O_2 should be used in isolators and therefore this is not a concern (may be a concern for room decontamination)
- Inactivation of 6 log BI assures robust process
 - NO, H₂O₂ decontamination has limited penetrability and therefore only suitable materials (e.g. non-porous) shall be used; surfaces need to be clean prior to the cycle
- D-values on BI certificates will apply for any H₂O₂ decontamination system
 - NO, D-values will differ system to system, the certified D-value may be used only to assess lot-to-lot differences of a specific BI type

Thank you for your attention!

Questions?

Martin Novák Technology Lead Martin.novak@skan.ch

pda.org