Case Study: Systemic Evaluation of Vial Container Closure System Suitability at Frozen Conditions

- Coralie Richard, Eli Lilly and Company
- With Significant Contribution from Peter Sargent, Eli Lilly and Company

Agenda

- Background
- Risk Assessment
 - Suitability Hazards
- Phase based strategy
 - Screening Assessment
 - Development
 - Scale Up
- Takeaways

Background

Evolving needs for deep frozen storage

- Cell/gene therapies
- Vaccines

Opportunies for extended expiry

- Increased protein stability for biologics
- Establish shelf-life with limited stability knowledge

CONNECTING PEOPLE SCIENCE MID REGULATION®

COPYRIGHT © PDA 2018

COVID-19 VACCINE STORAGE REQUIREMENTS

P fizer	moderna	Johnson Johnson	
PRIOR TO VIAL USE:	PRIOR TO VIAL USE:	PRIOR TO VIAL USE:	
 Prior to thawing, store in an ultra-cold freezer between -80°C to -60°C Once thawed, the vial can be stored undiluted in two ways: Up to 5 days in a refrigerator No more than 30 minutes at room temperature Once Vial is First Used: Store between 2°C and 25°C for no more than 6 hours. 	 Prior to puncturing the vial, the product can be stored in three ways: Frozen between -25°C and -15°C (Recommended unless immediate use is necessary) Refrigerated between 2°C and 8°C for up to 30 days Unrefrigerated for up to 12 hours Once Vial is First Used: Store between 2°C and 28°C for no 	 The product can be stored in two ways Refrigerated between 2°C and 8°C for no more than 3 months Unrefrigerated between 9°C and 25°C for up to 12 hours. Once Vial is First Used: The product can be stored in two ways Refrigerated between 2°C and 8°C for up to 6 hours 	
DO NOT REFREEZE	DO NOT REFREEZE	 At room temperature for up to 2 hours. DO NOT REFREEZE 	

American Hospital Association"

Risk Assessment: Suitability Hazards

Protection Risk

- Loss of elastomer elasticity below Tg
- Increased risk for breakage due to liquid expansion
- Difference of CLTE (coefficient of linear thermal expansion)

Performance Risk

- Mechanical/thermal stresses of shipping
- Thermal stresses of processing streams
- In-use performance after thaw

Safety & Compatibility

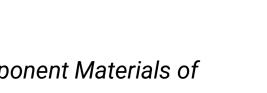
Frozen conditions favorable for DP stability and E/L

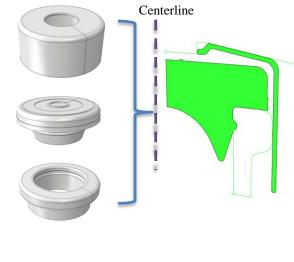
Risk Assessment: Phased Approach

Stage Description	Screen	Confirm	Develop	Scale Up	
Activities	 Form/Fit Concerns Finite Element Analysis 	 In-Use conditions CT X-Ray Inherent Leak (HeLD) 	 Head Space Analysis Stability Shipping Hazards 	 Process Mapping Structural Integrity 	
Phase	Ph 1/2				
	Ph 3/ Primary Stability				
Focus	Design and Systemic Risk with Focus on Patient Safety Process Suitability and Business Risk				

- Right size the approach
- Gate transitions between phases
- Expand the system boundaries

Screening: Form / Fit + Computed Aided Engineering **Stopper Seal Commodity** Vial Commodity

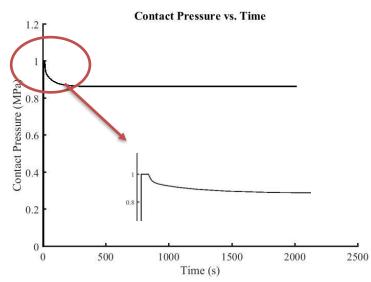

Form fit: Component Stack Tolerances


CAE / Modeling: characterize component Materials of Construction as inputs

<u>Vials</u> Assumed to be a rigid body


<u>Elastomer</u> Viscoelastic • characterization > T Elasto-plastic

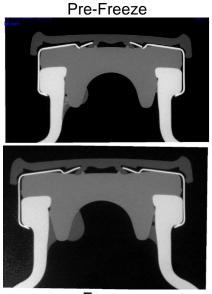
characterization $< T_{a}$

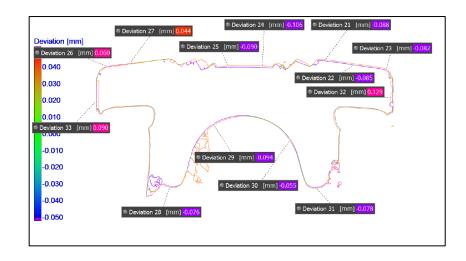


Screening: CAE

Evaluate contact pressure

- Consider shelf life
- Consider temperature

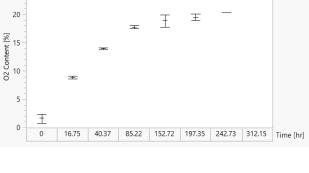

	Contact pressure (MPa)	Contact force (N)
Maximum	1	25.7
Relaxed	0.864	22.2


Development: CT Imaging

Confirm modeling assumptions via CT x-ray

- Look for variance between normal conditions and frozen

Frozen

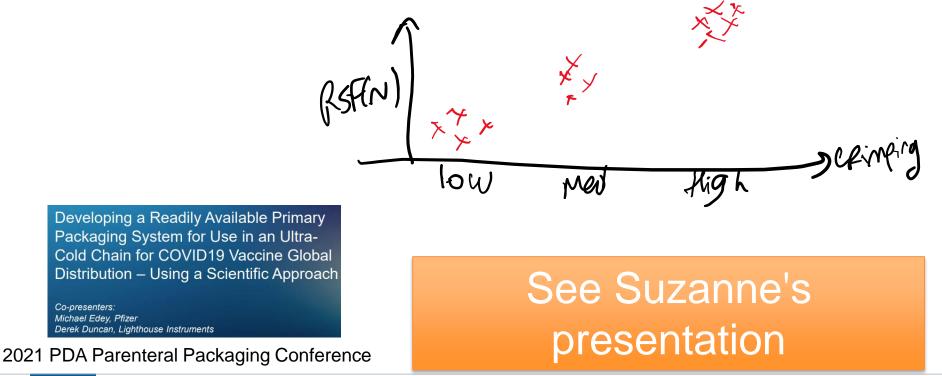

Development: CCI

Inherent Leak Rate

- Conduct as guided by USP <1207>
- Conduct at temperature via HELD
- Focused on design risk

Headspace Analysis

- Allows for CCI evaluation at in-use conditions
 - Incorporates temperature
 - Apply known shipping & shelf life constraints



- -78 °C, headspace underpressure
- Stopper loose elasticity, interface gaps
- CO₂ in headspace
- Warm up, stopper reseals
- CO₂ trapped

Development: Seal Quality Test

Main Goal: Establishing the correlation between residual seal force (RSF) (seal quality test) and CCI

COPYRIGHT © PDA 2021

Scale Up: Approach

Shift the focus from systemic to residual risk

- Transition from design \rightarrow process
- Emphasize control strategy development
 - Consider incoming, filling, and transit
 - Incorporate 2° packaging?
- Employ statistical powering

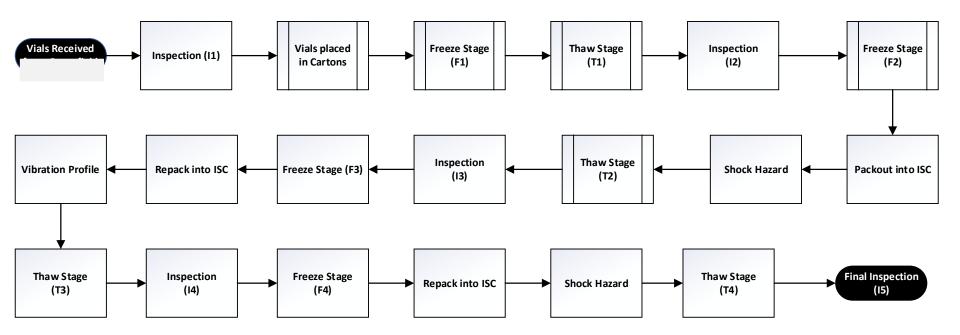
Scale Up: Structural Integrity

Hazards

- Liquid expansion at phase change
- Freeze/thaw at shipping nodes
- Mechanical stresses
 - Vibration and Drop during shipment
 - Glass to glass contact at filling

DOE considerations

- Storage Temperature/orientation
- Shipping conditions: temperature, method, e.g. dry ice
- Fill volume, CCS size
- Best outputs (RSF, CCI)



Scale Up: Process Mapping

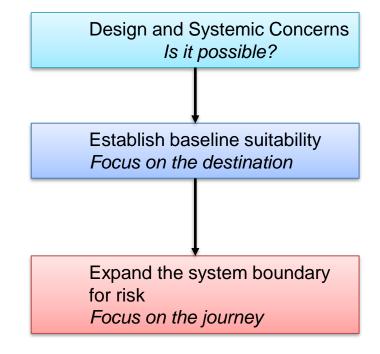
Process Mapping

- Understand temperature transitions
- Build in high-volume production hazards
- Adopt a statistical approach and foundation

Takeaways

Risk Assessment Strategy Use a right sized, phase approach

Screen for Form/Fit issues at 'standard' conditions


- Machinability studies
- Stacked Tolerance Analysis

Confirm & Develop frozen use conditions

- Identify lower temp. bound in storage and shipping
- Understand supply chain risk points
 - Impact of Shipping Hazards
 - Temperature transitions

Apply a world view in the scale up process

- Transition to outcomes thinking
- Propagation of stresses means propagation of risk

15

Acknolwedgments

- Craig Kemp
- Craig Goldhammer
- Lin Li
- Michael Foubert
- Vijay Sharma

- Lei Li
- Mark Beidelschies
- Michael Boquet
- David Lyngholm

16

Using Helium Leak Detection CCI Testing to Inform Container Closure System Design

A Prefilled Syringe Case Study

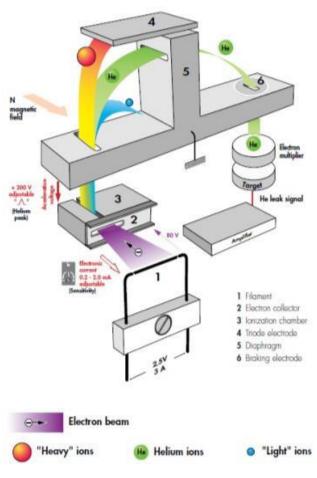
Container Closure Integrity: Regulations, Test Methods, Application

Coralie Richard Lei Li Eli Lilly and Company

Outline

Overview of Helium Leak Detection (HeLD)

- Method development for syringes
 - Fixture design
 - Helium charging
- Applications of Helium Leak Detection
 - Determination of inherent package integrity
 - Evaluation of syringe system and sub-system design
 - Assessment of container closure robustness


Introduction – Helium Leak Detection

Sensitivity & Quantitative

- Mass spectrometer as detector

Selectivity

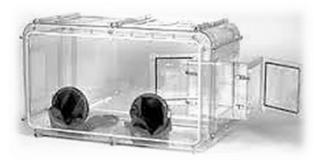
- Low atmospheric interference: Helium in the atmosphere (~5 ppm)
- Do need to minimize lab ambient helium and permeation
- Flows through cracks ~2.7x faster than air

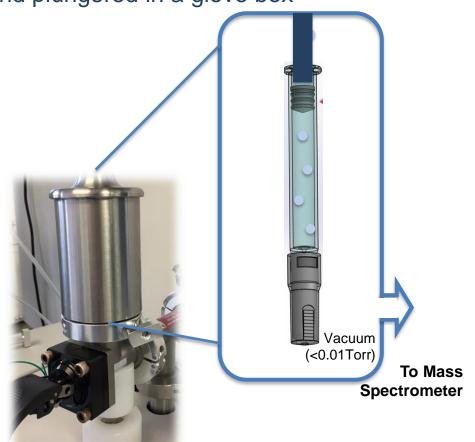
Leak Detection Associates, Blackwood, NJ

Prefilled Syringe System

"Weak links"

- Plunger-barrel seal
- Needle shield seal
 - Needle tip seal
 - Glued needle stem
 - Needle shield/syringe head

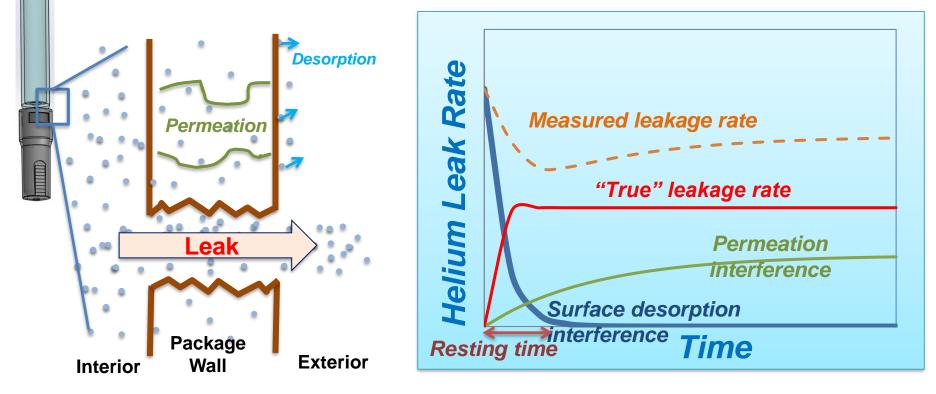



Preliminary Testing

1. Filling: syringes charged with helium and plungered in a glove box

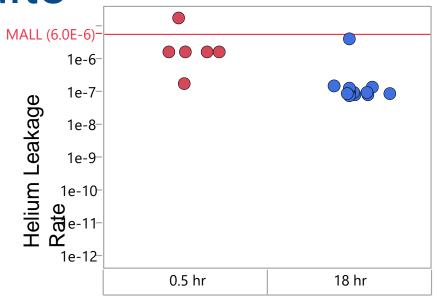
2. **Testing**: filled syringe is placed in a sample chamber for testing

• A plunger rod is used to retain plunger during testing



Potential Interferences

- Desorption of exterior surface-adsorbed helium
- Helium permeation



Preliminary Results

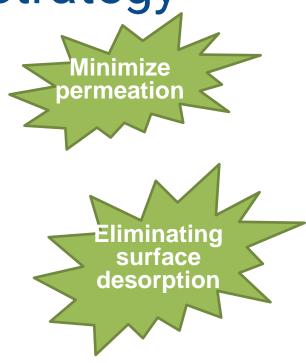
✓ Estimated overall leakage rate

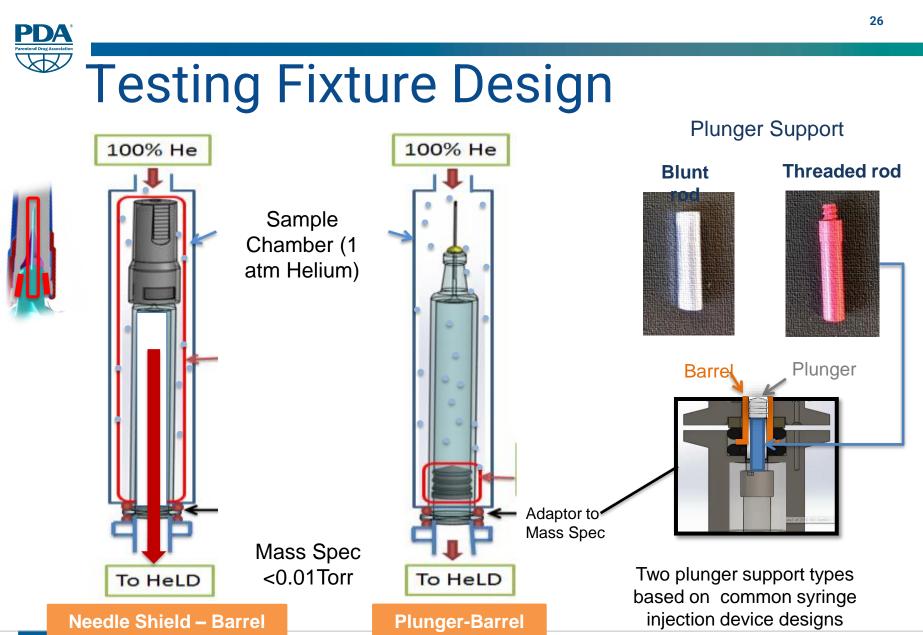
 Results can be artificially high due to surface desorption and permeation

✓ Demonstrated conformance to MALL

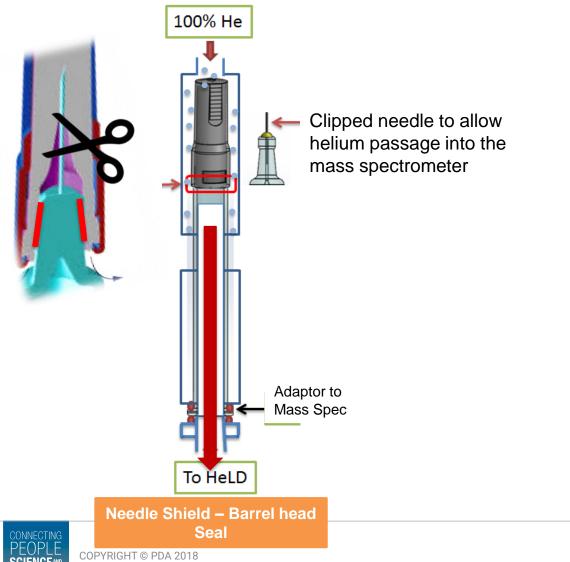
Improvement Needs

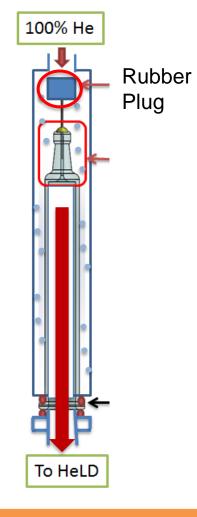
- □ Reduce helium background noise to measure "true" leakage rate
 - Exterior surface desorption
 - Permeation


□ Need to evaluate sealing capability of critical seal elements and sub-systems


Method Improvement Strategy

- □ "Fast and Clean" helium charging
 - Fast: allow testing to start prior to significant permeation
 - **Clean**: eliminate helium contact with interfering sample surfaces
- Divide and Conquer" critical seal elements
 - Isolate critical seal elements for independent assessment

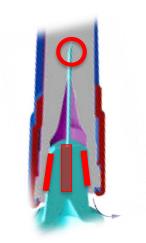

Key Enabler: Sample Fixture Design

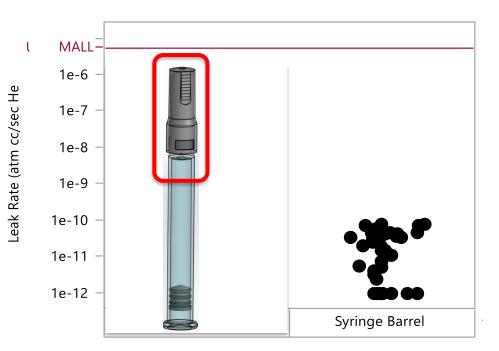


Testing Fixture Design

Needle Stem Seals

pda.org

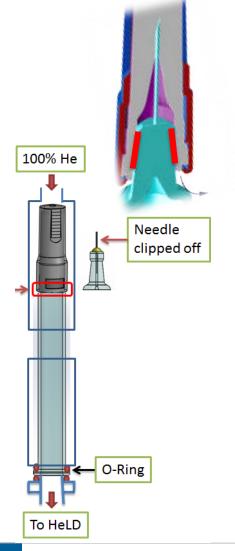

PDA Interal Drug Association



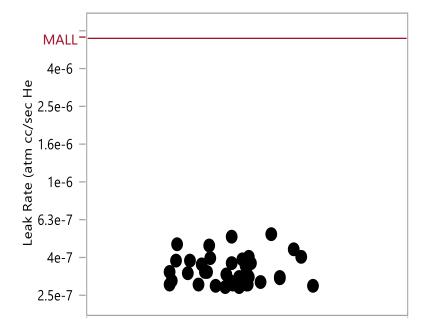
Evaluation of Needle Shield – Barrel Seal

A combination of 3 seal elements

- Needle shield Syringe head
- Needle tip Needle shield
- Glued staked needle
- Critical to product sterility and formulation content protection



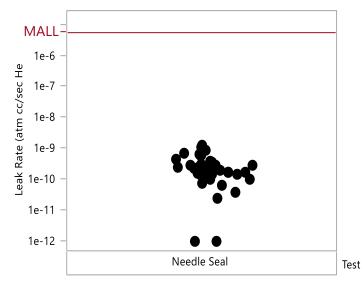
Leakage Rate <= 8 x 10⁻¹¹ atm-cc/sec


 Confirm to MALL for preserving sterility and product formulation content

PDA Evaluation of Needle Shield – Barrel Head Seal 32

- Physically mated (compression) seal
 - Critical to needle stem sterility protection
 - Contributes to DP compartment seal

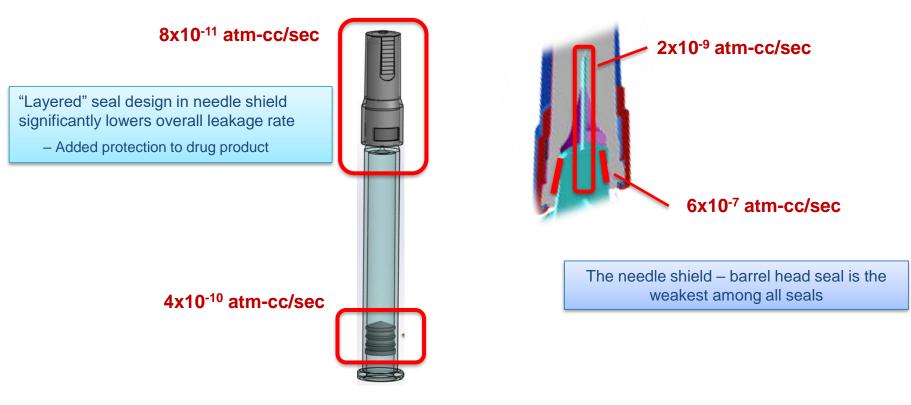
Leakage Rate <= 6x10⁻⁷ atm-cc/sec


Confirm to MALL for preserving sterility

COPYRIGHT © PDA 2018

Evaluation of Needle Stem Seals

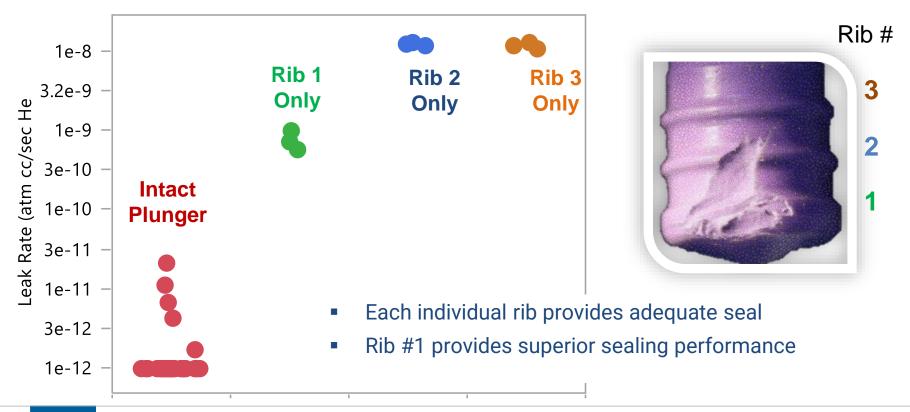
- Glued (physicochemically bonded) at the base
- Physically mated (compression) seal at the tip
 - Not definitive sterility barriers
 - Poor seals may result to product loss or injection issues


Leakage Rate <= 2x10⁻⁹ atm-cc/sec

 Confirm to MALL for preserving sterility and product formulation content

Inherent Package Integrity Summary 34

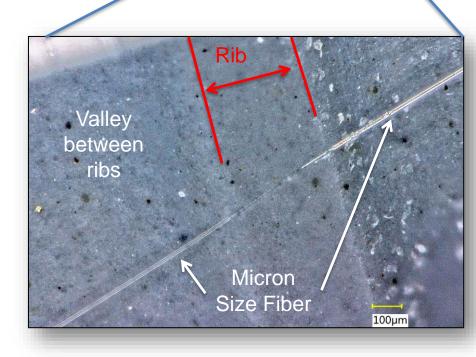
- DP compartment (Plunger & Needle Shield) <= 5 x 10⁻¹⁰ atm-cc/sec
- Needle stem compartment <= 6 x 10⁻⁷ atm-cc/sec
- All individual critical seals conform to MALL


Package Integrity was verified for preserving sterility and formulation content

Design Robustness: Plunger Ribs

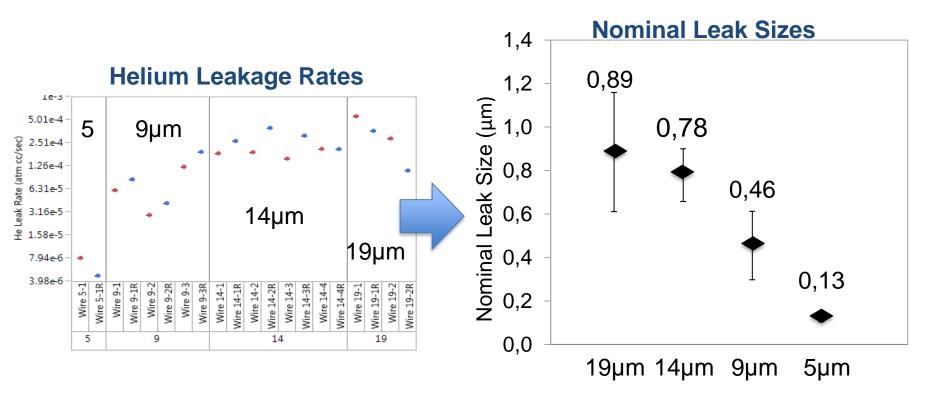
Each plunger rib assessed individually for sealing capability

- Assessed by compromising 2 of the 3 ribs, leaving 1 intact rib
- Evaluate impact of potential plunger molding defects



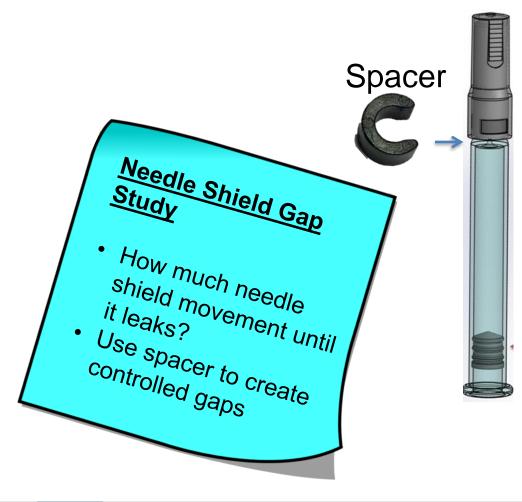
COPYRIGHT © PDA 2018

Design Robustness: Fiber Interference



- Fiber Intereference between plunger rib and barrel
- Industry needs a practical means to fabricate and characterize submicron size defects
- Assess impact of interfering fibers of various sizes

Design Robustness: Fiber Interference



- Presence of interfering fibers could compromise plunger seal integrity
- Interfering fibers provide a practical means for fabricating sub-micron defects
 - Enable development of other CCI testing technologies

Potential Opportunities

" CCI Capability" Multiple Lots Cpk of leakage rate? Correlation with dimensional Cpk **Component aging** study How does the seal performance change over time?

COPYRIGHT © PDA 2018

Understand Instruments + Methods + Results

- Not a black box
- Fixture design and helium charging critical for method development
- Understand your CCS
 - Inform packaging component selection and system design
 - Assess container closure robustness against design, process variability
 - Demonstrate conformance to MALL

References

